

LTHEUNIVERSITY OF KANSAS

 ${ }^{00}$ SCIENCE BULLETINHARVARD
Vol. 55, Nos. 4 and 5, pp. 123479ERAR
\title{ No. 4. Studies of the Phylogeny and Classification of Long-Tongued Bees (Hymenoptera: Apoidea) }

Arturo Roig-Alsina and Charles D. Michener

TABLE OF CONTENTS

Abstract 124
Introduction 124
Acknowledgments 125
History of the Classification of Long-Tongued Bees 125
Selection of Taxa 126
Selection of Characters 126
Selection and Coding of Characters of Adults 128
Annotated List of Adult Characters 128
Selection and Coding of Characters of Mature Larvac 138
Annotated List of Larval Characters 140
Phylogenetic Analves 142
Analvsis A, 144; Analysis B, 148; Analvsis C, 149; Analysis D, 152;Analvis E, 152; Analvsis F-G, 152; Analvsis H, 155
Classificatory Results 155
Concluding Remarks 159
Appendix: Number of Tubules in Reproductive Organs 160
Literature Cited 160
No. 5. Phylogenetic Relationships of the Exomalopsini and Ancylini (Hymenoptera: Apidae)

Fervando A. Silveira

TABLE OF CONTENTS

Abstract 163
Introduction 163
Acknowledgments 163
Material and Methods 164
Results. 165Exomalopsini, 167; Ancylini, 167; Relationship between Exomalopsiniand Ancylini, 168; Relationships among other Apinae, 168
169
Discussion and Conclusions172

Studies of the Phylogeny and Classification of Long-Tongued Bees (Hymenoptera: Apoidea) ${ }^{1}$

Artlero Rolg-Alsina? ${ }^{2}$ and Charies D. Michenfr²

ABSTRACT

Phylogenetic analyses of long-tongued bees were made using up to 82 taxa, 131 adult characters, and 77 larsal characters. Only two families of long-tongued bees are recognized, Mcgachilidac and Apidae. The Pararhophitini and Fidelini form a subfamily, Fideliinae, of Negachilidae. The subfamilies of Apidae recognized are Nomadinae, Xylocopinae, and Apinae. The tribes Isepeolini, Osimin, and Protepeolini are part of the Apinae, not part of the Nomadinae. Protepeohus is a junior synonym of Leiopodus. The tribes Euglossini, Bombini, Apini, and Meliponini form a distinctive clade arising from within the subfamily Apinae. The Ctenoplectridae is reduced to tribal status within the Apinae. The Exomalopsini of authors is dismembered, forming the tribes Exomalopsini and Tapinotaspini, and the genus Amolosrelis joining the Emphorini as a subtribe. Eucerinoda is inchoded in its own subtribe in the Eucerini and the Ancylini are tentatively separate from but close to the Eucerini. New family-group names (tribal and subtribal) proposed are Hexepeolini, Brachyomadini, Tapinotaspini, and Ancyloscelina.

INTRODUCTION

Despite many studies, the classification and phylogeny of bees has never reached a stage at which most anthors could agree on one classification and one probable phylogeny. lntuitive processes have led to diverse systems rather than one system. The problem is particularly acute among the long-tongued (hereafter L-T) bees (defined below), the higher taxa of which seem less differentiated than the commonly accepted families (or subfamilies) of shortongued (S-T) bees. We therefore selected the L-T bees for cladistic study to see if more satisfying results could be obtained.

The L-T bees include the forms often placed in the families Anthophordae (including Nomadinae and Xylocopinae), Apidae, Fideliidae and the genus Pararhophites, and Megachilidae; as discussed below, the family Ctenoplectridae should also be included.

The expressions L-T and S-T are in many ways inappropriate (Sichener and Greenberg, 1980; Laroca et al., 1989), for there are L-T bees with shor glossae and S-T bees with long glossate. The L-T bees constitute a monophyletic group ordinarily characterized by having the first two segments of the labial palpi elongate and flattened, forming with the galcae a sheath around the long glossa that is involved in the nectar imbibing process. Palpal segments 3 and 4 are small, directed laterally, and not flattened; occasionally they are absent. The monophyly of the L-T bees is funther indicated by the other characters on Cladograms I and 2 that show L-T bees as the sister group of the Ilelitidae.

For some time it has been known that among parasitic Allodapini there exist species obviously related to the l-T
nonparasitic allodapines but without long flat basal segments of the labial palpi and with the glossa relatively short. This trend reaches its extreme in the South African parasitic gemus Eucondylops (Xichener, 1970). The parasitic allodapines are mostly not known to visit tlowers; they must feed in the nests of their host bees, other allodapines. Thus they do not need equipment for extacting nectar from flowers, and appear to have lost it. Likewise, as emphasized by Silveira (in press), the genus Ancyla, which visits shallow-flowered Apiaceae (Popov, 1949), has no long flat segments of the labial palpi, and ret it seems to be a close relative of Tarsalia, an obvious L-T bee (see Silveira, I993). Warncke (1979) separated Ancyla and Taralia only subgenerically. Finally, Ctemoplectra, often given familial status becatuse of its combination of characteristics of L-T bees with labial palpi of S-T bees (Michener and Greenberg, 1980), clearly is a member of the L-T bee clade (see Results); it probably lost the palpal characteristics of that clade. It follows, then, that our study includes members of the L-T bee clade, whether or not they actually have the long, tlattened segments of the labial palpi. Of the three taxa listed above, however, only Ctenoplectra was inchoded in the cladistic analysis; the others are too rare to dismember for detailed study and moreover, their relationships to obvious L-T bees are clear (Eucondylops to Allodapula, Ancyla to Tarsalia).

In addition to characters of adults, on which earlier classifications have been based, we have considered tarval characters; we examine phylogenies based upon adults, upon latae, and upon the two stages together. In reality, partly

[^0]because they are still known only from a limited number of taxa, the larvac contributed relatively little to our conchusions.

The following abbreviations are used throughout this work:

L-T long-tongued
S-T shontongued
T1, T2, etc.
first, second, etc. metasomal terga
SI, S2, etc. first, second, etc, metasomal sterna
In the phylogenetic analyses, $\mathrm{L}=$ tree lengh, $\mathrm{T}=$ number of trees, $\mathrm{ci}=$ consistency index, and $\mathrm{ri}=$ retention index.

ACKNOWLEDGNENTS

Abstract

Our work was greatly lacilitated by National Science Foundation grant BSR 87-16817 (C. D. Michener. principat inventigator). Preparation of the cladograms in form for publication was largels by Douglas Yanega. For editorial and ljilliongraphic help, we thank Virginia Ashlock. A. R.-A.s work in Lawtence was possible thanks to the Organization of American States and the Consejo Nacional de Investigaciones Cientificas y Tecnicar, Republica de Argentinal. We appreciate the opportunity to discuss methodological and other problems with B. Alexander, J. S. Ashe, and S. Reyes ol the Unicersity of Kansas.

HISTORY'OF THE CLASSIFICATION OF LONG-TONGUED BEES

This section is by no means an exhanstive treatment of the history of apoid classification, or classification of L-T bees. We limit ourselves to several classifications to illustrate the diversity of opinions, and to some more recent works that have a direct bearing on our work. We also limit ourselves, in this section, to aduth characters since characters of immature stages have not played a major role in bee classification.

In his great work on British bees, Kirby (1802) distinguished L-T from S-T bees, using a generic name for each, Apis and Melitta respectively. In the same year Latreille (1809) recognized the same two groups as families, the Apiariae and Andrenetae. Subsequent authors such as Smith (1853), Cresson (1887) and Warncke (1977) recognized the same two families. Apidae and Andrenidae.

There were, however, divergent opinions. Lepeletier (1836,1841) and Schmiedeknech1 (1882) classified bees on the basis of habits: solitary, social, and parasitic. There were L-T bees included in each of these three categories. Many subsequent classifications followed this system. placing parasitic bees in separate taxa from the nonparasitic ones. Ashmead (1899) atso put all bees that he knew to be parasitic (even Psillyrus) in separate families, but these were placed among his families of nonparasitic bees. Tkalciu (1972, 1974) revived the idea of separate clades for all parasitic bees (cleptoparasites as well as social parasites like Psithyrus), suggesting that they arose from non-pollen-collecting ancestors of the pollen-collecting taxa. This would imply that there were different wasp ancestors for the various major groups of parasitic bees and therefore for groups of other
bees as well. To us there is strong evidence for monophyly olall bees (Brothers, 1975), as well as of the L-T bees (Mich(ner and Greenberg, 1980).

Another classification that intermixed L-T and S-T bees was that of Robertson (1904). His was a thonghtful classification, but based almost exclusively on the fana of a limited region (southern Hlinois). It divided bees into two groups of families, those with and those without prgidial plates. Had Robertson studied any of the majority of Colletinae in the world (for example, Leioproctus) that have pygidial plates, he would have recognized his error. It is now clear that the plate is an ancestral character that has been lost independenty among varions lineages of bees as well as wasps, but Robertson's classification was widely accepted for several decades.

We turn now more strictly to the L-T bees. Schenck (1859. 1869) transferred Ceratina Irom the parasitic bees, where it had been placed by Lepeletier (8.41), to the Anthophoridae. (He also included the S-T genera Melitturgu and Systropha in the Anthophoridae.) Even Börner (1919) still placed Ceratina among the parasitic bees in the Nomadidae. Schenck also separated the parasitic megachilids from the parasitic anthophorids, but did not place either with its nonparasitic relatives. It is relevant to our study that Schenck placed melittids between the S-T families (he called them subfamilies but used the -idac conding) and the 1 -T families. Thomson (1872) placed most of the parasites in taxa (tribes) with their nomparasitic relatives bu associated the melittids (S-T) with Ceratina and Anthophora in one tribe.
Robertson (1904) was the first to clearly recognize such groups as the Eucerini and Emphorini; he called them families.

Nichener (1944) recognized the Lithurginae as quite different from the Megachilinas in spite of similar appearance. He also recognized numerous tribes of Nomadinate. separate from the parasitic Anthophorinae such as the tribe Melectini. He assembled the Melintidae, our principal outgroup for the study of L-T bees, although it had earlier been dispersed in varions ways and sometimes associated with rophitine or panurgine genera, and he included Ctenoplectra in the Melittdae. He placed the Fideliinac and the Anthophorinae in the Apidae, Pararhophites being in the subfamily Anthophorinae. Minor subsequent modifications were summarized by the classification used in Nichener (1979). Anthophoridae was unfortumately recognized there as a family separate from Apidac.

Sǔstera (1958) proposed a classification in many ways not too different from those of Nichener, but with the Nomadinae divided. The Nomadini, Ammobatini and Pasitini were in the Andrenidae, an S-T family, while the Epeolini, Epeoloidini, and other parasitic anthophorines remained in the Anthophoridae, an L-T family:

Warncke (1977) gave a quite different classification, as noted above, using the two families Apidae and Andrenidae. Like some other authors, he recognized the similarity of helittidae (an S-T family) to 1 -T bees, and indeed he placed them (as a subfamily) in the Apidae. Pararhophites was in-
clucled in the Nelittinae. Other features that seem strange are inclusion of Exomalopsis and Fidelia in the Ceratininae, and of Mamuelia and Xylocopa with Ancyla in one group of Anthophorinae.

Rozen (1977), after studying larvae of Fidelinae, transferred the subfamily to the Negachilidae. McGinley and Rozen (1987) supported the above placement of Fideliinae and Rozen in the same paper placed Pararhophites near the Fideliinae in the Megachilidae. These placements are strongly supported by the present sudy.

Michener and Greenberg (1980) supported the placement of Nelittidae as derived from other S-T bees, as indicated by Michener in 1944. They considered Melitidae as the sister group to Ctenoplectidae and the L-T bees together, and separated Ctenoplectridae from the Melittidae as a family of S-T bees with features of L-T bees, and the sister group to the L-T bees. We show that this placement is incorrect in the Phylogenetic Analyses, below.

Sakagami and Michener (1987) proposed the tribe Manneliini in the Xylocopinae, and indicated that the Xylocopinat and the apine clade (meaning Apini, Bombini, Englossini, and Metiponini) are sister groups. This siewpoint is not supported by the present study.

From this brief and incomplete historical review, the lack of consensus throughout the history of bee classification is clear. Disagreement as to taxonomic rank is of minor importance; recent authors place bees in one, two, or up to eleven families. The interesting disagreements concern inferred phylogenetic relationships, which can be indicated, if desired, within a classification regardless of the taxonomic rank.

SELECTION OF TAXA

The 82 taxa used in our analysis of adults were selected to represent as nearly as possible all subfamilies and tribes of L-T bees and of the outgroup. the Melittidae (Table 1). Where there is considerable diversity within a tribe or subfamily, more than one genus was often selected, particularly if relations within the taxon are poorly understood, as, for example, in the groups that were included in the Exomalopsini (sensu Michener and Moure, 1957). Two subgenera of certain genera were included. We believe that the representatives selected provide a good survey of the diversity among $L-T$ bees, although there are only 82 species representing perhaps 10,000 species of L-T bees.

For each genus or subgenus inchuded in the study, a particular species was selected for detailed examination, primarily on the basis of abundance of material. It is characters of such species that are the bases for the phylogenetic discussion and anatysis; the species are listed in Table 1. For the sake of bresity we often refer to characters of a gemus, tribe, etc., but in reality we mean, of the selected exemplars. Of course we believe that in most cases the characters listed for a species are those of its genus and its tribe, etc., and we have examined the extemal characters of species other
than the exemplars. In some cases we know of interspecific variation in some of the characters used in our study. An alternative approach would have been to analyze generic characters, tribal characters, etc. This would have involved recording characters of many species in order to determine which are the generic characters and would have required exchusion of various characters because most species would not have been available for dismemberment and study of the intemal skeletal characters that are involved in our study. Of course if phylogenies were available for each genus, tribe, ctc., one would be in a better position to select characters of each for analysis in a broader study. We believe that the use of exemplars is more practical and probably better considering the present state of the study of apoid phylogeny.

When family, subfamily, or tribal names are used, reference is to the taxa as understood in the classification proposed in the section on Classificatory Results.

Unfortunately, because of lack of material for dissection, there remain a few taxa of questionable phylogenetic position that could not be examined in full detail and that are excluded from the analysis. One of these is the genus Ancyla. It is perhaps closely related to Tarsalia (Silveira, 1993 and in press) and the two were included in the same genus by Warncke (1979). Ancla is interesting principally because of the reduced labial palpi and rather shon glossa, as indicated in the Introduction. Another is Tozmsendiella; the Townsendiellini are not represented in our study although the position of this taxon is reasonably well known (see Roig-Alsina, 1991). It would also have been desirable to include Epeoloides, presumably a divergent member of the Osirini, sometimes placed in a tribe Epeoloidini. Diosys could well have been inchuded; it is a divergent member of the Anthidiini.

The larval study is largely based on the data recorded by McGinley (1981, Appendix 1). To his table of data we added character states Jor Parahophites (from McGinlev and Rozen, 1987) and Paratetrapedia (from Rozen and Michener, 1988), since these are genera of great interest in bee systematics. Formmately their characters were reported in such a way that the data could easily be extracted and coded to correspond to McGinley's Appendix 1.

The species in the larval study are those listed by Mc Ginley (1981. Table 1), plus Pararhophites orobinus (Morawitz) and Paratetrapedia swainsonae (Cockerell).

SELECTION OF CHARACTERS

Contrary to the recent practice of one of us (CDM), we use the word character for a feature that varies among taxa, and the expression character state for the condition of that character in a particular taxon. Thus "head color" is a character, and "head red" indicates a character state. This is contrary to taxonomists" usual usage but is in agreement with both pheneticists' and cladists' usage and has become well established. The resultant double meaning for character,

Table I. List of Tava I'sed as Adult Exemplars
Taxa are listed in the same sequence as in the matrix of adult characters (Tible 9). The last nine taxa are S-T bees not included in the matrix

Eremapis parvula Ogloblin
Teratognalla modesta Ogloblin
Istmalopsis niteata (Friese)
Exomalopsis jensent Friese
Tapinolaspis (Tapinotaspoides) lucumana (Vachal)
Tapinotaspis (Tapinorhina) eaerulea (Friese)
Paratetrapedia (Arhysoceble) melampoda (Noure)
I. (P'aratetrapedia) sp. (Chamela, Mex.)

Monoera lanei (Noure)
Caenonomada brunerii Ashmead
Ancloscelis apiformis (Fabricius)
Melitoma segmentaria (Fabricius)
Diadasia peryrae (Holmberg)
Diadasina distincta (Holmberg)
Ptilothinx tricolor (Friese)
Tetrapedianp. (La Rioja, Arg.)
Coelioxoides waltheriae Ducke
Tarsalia ancliformis Popov:
Eucernoda gaye (Spinola)
Canephomila apiformis (Friese)
Eucera chy̌soprga Pérez
Melissodes agilis Cresson
Svastra obliqua (Say)
Peponapis ferrens (Smith)
Anthophora paranensis Holmberg
Habropoda laboriosa (Fabricius); H. pallida (Timberlake)
Delloptila elefas (Friese)
Centris tricolor Friese
Epicharis rlegans Smith
Deromelecta raliformica (Cresson)

Zasosmia maculata (Cresson)
Thyreus ramosa (Lepeletier)
Ericrocis lata (Cresson)
Mesonychum jonsemi (Friese)
Mesoplia nufpes (Perty)
Rhathymus birolor I epeletier
Parepeolus atmimus (Friese)
Eertlodes stuardi (Ruiz)
Osins varivgatus Smith
Leiopodus lacertimus Smith
lsepeolus vachali Jörgensen
Melectoides miseriatus (Friese)
Neolarra verbesinae (Cockerell)
Caenoprosopis crabronina Holmberg
Oreopasites arzonica Linslet
Triepeolus distinchu, (Cresnon)
Epeolus compartus Cresson
Rhogepeolus bigibbosus Moure
Holcopasites calliopsivis (Linslev)
Brachynomada yp. (Argentina)
Kelitasp. (Argentina)
Nomada ('Paclynomada) utahensis Moalif
N. (Centrias) sp. (Kansas)
Biastes brevicomis (Panzer)
Hexppolus rhodogrne Linsley and Michener
Manuelia gayi (Spinola)
Sylocopa vigminca (Linnaeus)
Cevatina calrarata Robertson; C. mupestris Holmberg
Macrogaleas candidu (Smith)
Braunsapis facialis (Gerstaecker)
Bombus pemesyluanicus (De Geer)
Apis mellifera Linnaens
Melipona futera I epeletier

Parlamoma cupira (Smith)
Euglossa cordata (Limnacus)
Eufriesea violacea (Blanchard)
Pararhophites orobinus (Morawitz)
Neofidelia profuga Monte and Michener
Parafidelia frieset Brauns
Lithurge apicalis Cresson
Trachusa (Heteranthidium) bequaerti
(Schwarz)
Anhhidum porterae Cockerell
Moplites albifroms (Kirbv)
Osmia lignaria Sas
Megachile petularis Cresson
Corlioxys octodentata Say
Ctenoplectra fuscipes (Friese)
Macropis steironematis Robertson
Melitta leporina (Panzer)
Dasypoda panzen Spinola
Hesperapis ehcifoliae (Cockerell); H.
carinata Stevens
Meganomia gigas Michener

S-T Been

Andrena enthrogaster Ashmead
Protandrena mexicanormm Cockerell
Leioproctus delahozi Toro
Colltes inaequalis Say
Caupolicana rufirollis Friese
Dufoura marginata (Cresson)
Nomia triangulifera Vachal
Halichu mbicundus (Christ)
Augachlora pura (Say)
sometimes meaning that which varies and sometimes the condition of a panticular taxon, rarely canses confusion, and particularty in the section on classification we regularly refer, for example, to Character $30-1$ instead of writing out Character 30, State (1).

Adults of all the included species (Table 1) were not only examined extemally, but were treated with $10 \% \mathrm{KOH}$ (room temperature, for a day or more), dismembered to get appropriate siews of interesting structures, and examined and stored in glycerin.

Selection of characters for use in a study such as this is extremely important. We do not know the ideal way of doing so. There is an infinity of characters that might be found and used in a study of a large group such as the L-T bees. We excluded autapomorphies because they do not contribute to knowledge of intertaxon relationships. Characters that seem to be autapomorphic (i.e., are on terminal taxa) on the cladograms also appear somewhere else in the cladogram. We limited ourselves to characters for which a reasonable assumption about polarity could be made. That is, we inclucled no character for which the plesiomorphic state for L-T bees could not be recognized with some degree of confidence by means of outgroup comparisons as described in the next section.

These practices exclude a multitude of characters that might be used in detailed analyses of smaller groups. For example, features of punctation, surface sculpure, facial proportions, distribution and color of pubescence, and details of shape of the hidden sterna and male genitalia might all be polarizable and valuable in a sudy of a limited taxon, a gemus or perhaps a tribe. These characters, however, cannot be polarized for a large taxon like the L-T bees because they vary kaleidoscopically within both the L-T bees and the outgroups. Since it is impossible to pick out a state for such a character that is plesiomorphic relative to the rest of the states, it is not a polarizable character. The problem is iclentifying similarities that are homologous and determining their points of origin, things that can often be clone within a genus or tribe but that become difficult for similar characters in high-ranking taxa.

With the exceptions indicated below, we included all characters that we found for which a strong hypothesis as to the plesiomorphic state could be made. Neaty all of the characters are those of the exoskeleton, but many insolve internal ridges and aporkemes.

A problem that arises is the possibility of biasing the selection of characters to produce a certain phylogeny or classification. To some degree this may be impossible to aroid
when characters are selected by specialists in the group who have a prion ideas about relationships. However, by using all the characters that we found whose polarity could be determined, we hope to have largely avoided this problem. We betieve that a posteriori searthing for characters to produce a desired result is not legitmate. For example, we suspect that the Exomalopsini, which appears as a paraphyletic group in our study, is in reality monophsletic, and as noted in the section on Classificatory Results, some of our characters suggest this, as does a later study by Silveira (1993). We do not believe that it would be legitimate to search for more characters in order to establish monophyly of the group: one might thereby fail to find other evidence showing some taxa to have closer relatives in other groups. The proper procedure would be a more detailed study of the Exomalopsini and its relatives, again using all characters that can be found that are polarizable within the group of Exomalopsis and its relatives.

SELECTION AND CODINC OF CHARACTERS OF ADULTS

The principles used in selecting characters are described above. A few characters, however, were omited even though we know the plesiomorphic states. Among these was number of segments in the maxillary palpi, which is plesiomorphically 6 , but is reduced in various taxa to $5,4,3,2$, and 1. The reductions are often variable within taxa, even within species, so that coding is difficult; moreover, such reductions can be seen in most higher taxa. For this reason we believed that this character would contribute little to our knowledge of phylogeny of higher taxa. Some characters that we did use in the anatysis also proved to be of litule value, but we did not have ready knowledge that this would be the case until the study was made.

A character that we omitted from amalvsis concems the seriate disannular hairs of the glossa, which we initially coded as follows: (0) Long, divergent. (1) Ninute and ordinarily convergent, invaginated inside glossal canal. (2) Absent. There are two rows of seriate hairs; see Michener and Brooks (1984). They are long and divergent in most S-T bees. Because in L-T bees they are often minute, visible only with clissection and a compoind microscope, the distinction beween States (I) and (2) was not verified for some taxa and the character was therefore excluded from the anakses. For our study the distinction between State (0) and the others would only have added one character to strengthen the differences between S-T bees (including Melittidae) and L.-T bees, i.e., it would have added a character to Nodes 3 and 41 of Cladograms 1a, 11, and 2a, 2b. These are already strongly supported nodes. It is in the Nomadinae and similar parasites that the seriate hairs sometimes become especially small, sparse, and even absent.

Another character that was omitted from the analvses was presence or absence of the hind tibial scopa. It is lost in Megachilinae and parasitic bees. We excluded it (and dicl
not reintroduce it) in an early attempt (before the Analyses reported here) to diminish the effect of comergence among parasitic bees.

Polarity was determined by comparison with fise genera representing all three subfamilies of Nelitticae (Table 1), the principal outgroup. Nelitidae was selected as the closest outgroup because it shares a number of chanacters with ,-T bees even though it is an S-T family on the bases of numerous other characters. Its position was well indicated by Michenct and Greenberg (1980). Because a melittid character could be a family-level apomorphy, or because of variation among the five melitid taxa, the states of certain characters were also determined for certain species in other S-T families. Tasa of these families used are listed at the end of Table 1. The phylogeny of the S-T families has not been analyzed; we examined members of the Andrenidae, Colletidae and Halictidae relewant to all characters used in our analyses. The Halictidae appeans to be derived in many features, and it was therefore principally from examination of Andrenidae and Colletidae that we determined whether polarities based on melittid character states were verified or required modification. When modification seemed appropriate, it is explained in the annotated lists of characters.

The plesiomorphic state was coded (0). For the other states, in characters with two or more other states, no assumption was made as to a phylogenetic sequence of those states; all were run as mordered. There were 37 multistate characters in our analysis of adults and 12 in the analysis of larvae. For individual characters, mans of the problems concerning polarity and application of codes are explained in the lists of characters. Some characters relate to structures that are absent in certain taxa. For example, we list chatacters of the flabellum, a structure that is sometimes absent. In such cases, the character is coded as (i) for taxa lacking the structure. The same code is used if a structure camot be observed, for example, because of lack of material.

ANNOTATED LIST OF ADLLT CIIARACTERS

1. Subantemal suture: (0) Directed towand lower margin of antennal socket, sometimes divided (l-shaped) below sochet. (1) Directed toward outer margin of socket. When the suture is Y-shaped, the outer branch is directed toward the onter margin of the socket but the lower, undivided stem is directed toward the lower margin. State (1) is characteristic of Megachilinae.
2. Anterion tentorial pit: (0) High on epistomal suture. (1) At on below middle of lateral part of epistomat suture.
3. Integument of paraocular area: (0) Not differentiated from more median part of froms. (]) Narrow area bordering eye with punctures sparser and smatler than rest of fions, pater in cleared specimens, margins sometimes thiffuse. (2) Such an area broad, ovoid, with sharp limits (more distinct in female than in male). Smallet areas, in particular [e.g., State (1)], are not recognizable except in cleared specimens. At least in State (2) there is a laver of possibly glandular tissue turlerlving the area. Such areas are suggestive of the factal foseac of mans cofletid and andrenid bees. Our polarization is based on the absence of stich areas in Nelitidae. but such absence could be a synapomorpliy of that family. Their absence also in Megachilidae [although State (]) accurs in Fideliini], Nomadinate and Xylocopinae supports the polarization
indicated above for the $1-\Gamma$ bees and especially for the Apidae. State (2) is characteristic of Exomalopsis, its allies such as Erpmapis, and ahos Tapinolaspis.
4. Paraocular carina: (0) Absent. (1) Present.
5. Condte of anterion mandibular articnlation (cranial condyle): (0) Contiguous with lateral clypeal margin. (1) Parts covered by lateral clypeal margin, which is usually elevated over condvle (Fig. 4). The melittids (except some Hespermpis) exhibit State (i). However, because State (0) characterizes other S-T bees, most melittids appear to be derived in this character.
6. Lateral part of lower portion ol clypens: (0) Not bent back-
ward or onk gently curved backward. (1) Stronglv and abrupty bent back, so that liateral parts are at angle of $90^{\prime \prime}$ to 115° to median part.
7. Labrum: (0) Breader han long. (1) Longer than broad.
8. Anterior sufface of labrum of female: (0) With basal polisherl area, sometimes elevated, clearts delimited from punctate and hairy dise. (1) Without basal polisheed area. Neofidelia has a short polished area, perhaps equivalent to that described above: it was coded (1). bowever.
9. Erect labral setac: (0) Not forming a U-or V-shaped row. (1) Coarse setae forming U^{I} - or V^{-}-shaped row, with midpoint (base of

L'or ') near apex of labrum and lateral arms extending basad near margins of labrum. State (1) occurs in many megachilids.
10. Tult on apical margin ol labrum: (0) Absent. (1) Present. Athough present in Dasypoda, such a tuft is absemt in most S-T bees.
11. Antennal sclerite: (0) Not extending internalls beyond antemnifer (Figs. 6, 7). (1) Extending intemally bewond antennifer (Figs, 9, 10). State (1) is characteristic of Emphorini and Coelioxoides: Anclosceles is intermediate but was coded (I) like other Emphorini.
12. Dorsal sheet of anterior tentorial arm: (0) Without a branch united with upper wall of antennal socket (Fig. 2). (1) With such a branch (Fig. 4). State (1) is characteristic of Eucerini.
13. Dorsal sheet of anterior tentorial arm: (0) Without spar reaching orbit of cye. (1) With spur reaching laterally to eye margin and indicated externally by transterse line or scar across paraocular area at level of antenna. State (1) is characteristic of Euglossini.
14. Union of anterion tentorial arm to head wall below antennal socket: (0) Reaching lower margin of antemal socket so that no triangular space is enclosed (Fig. 5). (I) Forming triangular space between dorsal shect of tentorial anm and attachment of thickening of seconclary tentorial brislge, but space small and not alwass recognizable extemally by l-shaped subantennal suture. (2) Space large, forming triangular subantennal area (Fig. 8) recognizable externally between arms of l-shaped subantennal suture and lower margin of antennal socket. In Biastes the dorsal sheet of the anterior tentorial armends below the antennal socket, as does the secondary tentorial bridge; it was coded (0). In Euglossini the attachment of the tentorial arm is so modified that it is difficult to cotle and in Partamona the antennae are so close to the epistomal suture that interpretation is clifficult. These were coded (弓).
15. Thickening of secondary tentorial bridge: (0) Uniting to head wall at or below antemal socket (Fig. 1). (1) Merging with eutentorial arm before reaching head wall (Fig. 3).
16. Lateral expansion of internal thickening above epistomal ridge: (0) At least as wide as half width of socket diameter (Fig. 5). (1) Refluced, less than half witth of socket diameter.
17. Clypeus with apical inflection: (0) Present (Fig4, 5-10). (1) Reduced to narrow bandl.
18. Lateral carina of clypeus, along lower part of epistomat suture of male, and associated groose lateral to it: (0) Absent. (1) Present (Ehrenfeld and Rozen, 1977, Fig. 14). State (1) is found only in certain Nomadinae.
19. Epistomal ridge (intenal mamifestation of epistomal suture): (0) Well developed (Fig. 5). (1) Absent below tentorial pit.
20. Epistomal ridge below tentorial pit: (0) Receiving sheet from eutentorial arm, this sheet margined internalls br a thickening (Figs. 6, 7). (1) Receiving such a sheet which is not margined be a thichening. (2) Without asheet from the eutentorial arm (Figs. 5. 8-10).
21. Postoccipital pouch below foramen magnum: (0) Absent. (1) Shallow. (2) Distinct and deep (Fig. 12). This feature is sariable in melittids, but is absent in other S-T bees; (0) is therefore considered plesiomorphic abhough most melitids were coded (2).
22. Fan-shaped posterior sheets of tentorium, sometimes represented externalls by the occipital sulci: (0) Well developed (Figs. 1, 2, 4). (1) Small to absent (Fig. 3).
23. Attachment of secondary tentorial bridge to posterior wall of head (below foramen magnum): (0) Above and separate from hyperstoma at upper end of proboscidial fossa, but connected to hypestoma by rertical septum usually manifest externatly as vertical black line extending upward from upper end of proboscidial Lossa (Fig. H1). (1) As in (0) but sertical line wirler, clear, representing thicker soptum. (2) Secondary bridge fused directly to hypostoma, thus eliminating vertical black line, fusion evident externally in that lines of attachment of bridge to head wall reach hypostoma at upper cont of proboscidial fossa independentlv and separated by clear mone (Fig. 12). Thin character is variable in Melittirlae but other S-T bees have State (0) except for Dufourea, which has State (2).
24. Epistomal suture below anterior tentorial pits: (0) Nearly straight or gently curved or angulate so that sides of clypeus diverge strongly. (1) Exteneling straight down, then abruptiv angulate laterad, so that sides of upper part of clypeus are about parallel.
25. Ventral sclerite of neck: (0) Absent. (I) Present (RoigAlsina, 1989, Fig. 4). State (1) is found only in Osirini.
26. Articulation of maxillary cardo and stipes: (0) Without small triangular sclerite (Fig. 13). (i) With small (to minute) triangular intercalary selerite. State (1) is found onls in Nelittidae but is not found in other bees and appears to be a synapomorphy of that family. It therefore adds nothing to our studs.
27. Haxillary stipes with basal process (Winston, 1979, Fig. 2b): (0) Not produced mesalls. (1) Produced mesally, elongate. Although State (0) appears in Apis, State (1) is in general characteristic of 1 -T bees and Melittidae (Michener and Greenberg, 1980)
28. Length of stipital comb-bearing concavity: (0) Over onefourth length of stipes. (1) One-fourth length of stipes or less, deep (Brooks, 1988, Fig. 5). State (1) is found onlv in Anthophorini.
29. Naxillars stipes with comb in concavity on distal posterior margin: (0) Absent. (1) Present (Fig. 14). When a comb is present it is alwavs in a concavity. Onk some Nomadinae have a concavity from which the comb was probably lost.
30. Maxillar stipes with ridge on outer surface: (0) Absent. (I) Present (Fig. 14). There is some variation in this character. For example, in Melitta, Ctenoplectra, and Euglossa, the ridge is limited to the apical half or third of the stipes. In Ceratina the ridge is near the posterior margin of the onter surface instead of near the midtlle. In Melipona there is an angle but no sharp ridge. Although the character is variable in Melittidae, other S-T bees are coded (0), which is thereforc considered plesiomorphic.

3I. Dististipital process: (0) Absent. (I) Present, curved anteriorly (Fig. I5b; Winston, 1979, Fig. 7b). State (1) is founcl onls in Alegachilinae.
32. Alaxillary stipes with expansion on distal anterior margin (opposite to comb and concavity): (0) Absent. (1) Present (Fig. 14).
33. Naxillary palpus with brush of hairs on third segment: (0) Absent. (1) Present. State (1) is found only in Emphorini.
34. Aaxillary galea with comb on inner sufface: (0) Present (Michener, 1981, Figヶ. 10-13). (1) Absent. This comb is principally a character of S-T bees (including Arelitticlae) although . Veromelecta has a comb. Deltoptila, Rhathymus, and Thyreus [cocled as (1)] have some hairs in this atea.
35. Naxillary galea: (0) Without row of bristles. (1) With lomgitutinal row of bristles on anterior margin of internal surface (Fig. 15b). The row in sometimes limited to the apical third or lourth, as in Anthophora, Deltoptila, Mesopha, and Zacosmia; these were all codect as (1).
36. Maxillary galeal black: (1) Unifombly scerotized or only narrowly descleroized near apex. (1) With posterion matgin broadly elesclerotized almost to base (Fig. I5).
37. Aembrane underlying maxillary lacinia: (0) Unselerotized, not striate. (1) Striate, sometimes weakly sclerotized.
38. Naxillary lacinia: (0) Sclerotized. (1) Membranous.
39. Naxiltary lacinia: (0) Rounded. (1) Elongate.
40. Stipital sclerite [temmology of Winston (1979, Fig. 2b)] of maxilla: (0) Distinct. (1) Fused to rest of stipes.

4I. Giteal blade (midway between base and apex) with internal sclerotized surface: (0) As wide as external surface. (1) At most two-thirds as wide as external suface (Fig. 15b, c). (2) Threetourthe as wide as external surface or more but narrower than extemal surface. When the internal surface is narrower than the outer, the anterior edge of the former often appears as a dark line which is the midrib, of the galea of Winston (1979).
42. Lorum: (0) Platelike, that or bent around base of mentum (Michener, 1985, Fig. 31). (I) \-shaped with slender arms (Michener, 1985, Fig. 45). State (1) is characteristic of Melittidae and L-T bees, i.e., of all taxa in our analysis [sec Michener and Greenberg (1980)]. This character therefore does not contribute to our analysis.

Figs. 5-10. Anterior wall of the hearl, femate: heads sectioned at level of anterior mandibular articulations. 5, 7, 8, 10, posterior (internal) views; 6, 9, longitudinal sections of 7 and 10 on planes $A B$ and $C D$, respectivelv. 5. Centris tricolor. 6, 7. Macropis steironemaiis. 8. Tapinotaspis tucumana. 9, 10. Diadasia peryrae.
43. Lorum and mentum: (0) United. (1) Separated from one another.
44. Base of lorum: (0) Simple. (1) With a longitudinal fissure on each side (Plant and Paulus, 1987, Fig. 19).
45. Base of prementum: (0) With a fragmentum isolated or partly isolated from rest of prementum (Michener, 1985. Fig. 43). (1) Without such a fragmentum. In Bombus, Centris, Diadasina, Eficharis, and Ptilothrix there is a projection from the base of the prementum; they were coded (1). For bees as a whole, lack of a fragmentum must be plesiomorphic since there is no fragmentum in most S T bees. However, it is present in Alelittidae and Andrenidae. We therefore consider presence of a lragmentum as plesiomorphic for 1 -T bees
46. Subligular process of prementum (Winston, 1979, Fig. 2c): (0) Fully sclerotized and united to rest of prementum (Fig. 16).
(1) Separated from rest of prementum by weak line. (2) Weakly sclerotized.
47. Small sclerite laterat to subligular process of prementum: (0) Absent. (1) Present (Fig. 16). These scterites are quite distinct in Leiopodus and Anoloscelis but are weakly sclerotized and difficult to see in other genera coded (1).
48. I abial palpus segments 1 and 2: (0) Not particularlv flattened, similar in form and length to segments 3 and 4 . (1) Greatly clongated compared to segments 3 and 4 , usually flattenerl. State (1) is characteristic of 1 -T bees in general. The first palpal segment in Lithurge is short, similar to that of a melittid, although the second segment is long and llat. Lithurge was coded (0).
49. Labial palpus, base of segment 1: (0) Parallel sided. (1) lnner margin incised so that base is strongly narrowed (Fig. 16; Winston, 1979. Fig. 35).

attachment of secondary
tentorial bridge

Figs. 11, 12. Head capsule, lemale, posterior view. 11. Macropis senonematis; S , line corresponding to internal vertical septum. 12. Melitoma segmentaria.
50. First segment of labial palpus: (0) Without membanous margin (Figs. 16, 17a, b). (1) With membranous inmer nargin (Fig. 17c, d).
51. Disanmalate surface of glossa: (0) Exposed, nearly as large as anmulate surface (Nichener and Brooks, 1984, Fig. 5). (1) Invaginated, anmulate surface surrounding almost whole glossa (Michener and Brooks, 1984, Fig. 8). In various parasitic taxa (e.g., Isepeolus, Leiopodus, Nomada, Triepeolus, and Xeromelecta) the disannular surlace is considerably exposed. It is nonetheless much smallet than the annalar surface and the degree of exposure is difficult to assess. Such forms were coded as (1)
52. Glossal rod (Michener and Brooks, 1984, Fig. 9): (11) Absent. (1) Present but not enclosing bacular canal. (2) Present and
pardy surrounding the bacular canal (Michener and Brooks, 1984. Fig. 89). For temmology, see Michener and Brooks (1984). State (1) is found in sphecids and most S-T bees including melitids. In most Melectini and Nomatinae the rod is weakly sclerotized and thin (i.e., flat). Such forms are coded as (1), even though the rod seems to be reduced. Michener and Broohs (1984) considered the rod absent in some Nomadinae, but we found at least a stiffer strip in atl whose glossae we fissected. There are all degrees of reduction, and the rod is well developed in Caenoprosopis, Thatestria and Triepeolusin the Nomadinae, as well as in other parasitic forms such as Leiopodus and sepeolus. State (2) is rare ouside the apine clade; it is not associated with heaw pigmentation in spite of the large size of the mod (see Wichener and Brooks, 1984).
53. Flabellum (Michener and Brooks, 1984, Fig. 8): (0) Absent. (1) A flabellum-like structure present but not consuricted at its base. (2) Presemt, constricted at its base. A flabellum is absent in most S-T bees including most melittids. There are all degrees of flabellat development, of which we recognize two levels, (1) and (2). Presence of a well-developed flabellum in some panurgine Andrenidae prestmably shows that it can arise independently. It can also be lost, as in Habroporla, where its absence is an autapomorphy rather than a plesiomorphy.
54. Posterior surface of flabellum: (0) Smooth or nearly so. (1) With a cobblestone pattern (Michener and Brooks, 1984, Fig. 94F). Except on the flabellum-like structure of Dasyposa (Melittidae), there is nothing among S-T bees oo suggest a cobblestone pattern.
55. Ammular hairs of glossa: (0) Extending to base of IIabellum. (1) Separated from flabellum bv a non-annuate shank (Nichener and Brooks, 1984. Fig. 99B). Incompletely developed (labella are always set among the distal annular hairs, as are manv fully dereloped flabella with basal constrictions. In a few taxa the fully developed llabellum is at the end of a largely bare shank.
56. Basiglossal sclerite (Michener and Brooks, 1984, Fig. 7): (0)

Figs. 13, 14: 13. Macropes steiromematis, posterolateral view of portion of proboscis showing articulation of cardo, stipes and lorm. 14. Melitoma spgmentaria, stipes, external view.

17

Figs. 15-17: 15. Anthidinm porteraf, femate. Maxillary galea: at, external vicw: b, internal view; c, cross section near basal third, at plane AB. 16. Tafinotaspis coeruled. tabial patpus and apex of prementum, posterior view and cross section of labial palpus near base. 17. Cross sections of first segment of labial palpus near basal fourth: a, Anthidium porterae; b, Melitoma segmentaria; c , Bombus permsylvanicus; d, Habroporla laboriosa.

A transwerse band across base of glossa. (1) More elongate, often longer than broad (sometimes medially cleft), laterally with posterion basal process extending around side of base of glossa. S-T bees have State (0).
57. Flabellum: (0) Not divided. (1) Divided into preflabelhun and postlabellum arising from preapical anterior surface of preflabethum (Nichener and Brooks, 1984, Fig. 96F). State (1) is Characteristic of Ericrocidini.
58. Paraglossa beyond apex ol suspensorium: (0) Shorter than to 1.3 times length of suspensorimm. (1) 1.5 to 2.5 times length of suspensorium. (2) Over 3 times lengdy of suspensorium. In melittids the range is up to 1.2. State (2) is characteristic of the Eucerini.
59. Mandibular apex of femate: (0) Simple or with lower tooth longer than others. (1) With lower tooth, formed from end of adductor ridge, shorter than next tooth, the mandible being tridentate with middle tooth longest (Wichener and Fraser, 1978, Figs. 29, 99). State (1) is found in Lithurge and some Xilocopinae.
60. Mandible of female: (0) Slender, region of pollex not expanded distally (Michenet and Fraser, 1978, Fig. 12). (1) With region of pollex expanded to form two to several teeth or an edentate margin above rutellum (Michener and Fraser, 1978, Figs. 34, 41). State (1) is characteristic of Megachilidae and at least some members of the apine clade.
61. Mandibular grooves and ridges on outer surface: (0) Distinct. (1) Largely absent. State (1) is formol only in the Meliponini and Apini.
62. Pronotum with ventrolateral extensions: (0) Fused midventralls, usually on internal surfaces of extensions. (1) Separated midentrally (Fig. 18). This character is variable in Melittidae but colletids. andrenids, and Dufourea in the Halictidae show State (θ).
63. Lateral cau ina separating exposed part ol propleuron from part hidden by promotum: (0) Present (Fig. 19). (1) Absent.
64. Apophyseal arms of prosternum: (0) Fused along median crest. (1) Separate from one another (Michener, 1944, Fig. 26). Athough melittick were all coded (1), all other S-T bees show State (0). Presumably State (1) is an apomorphy for melittids and for some 1 -T bees.
65. Apophyseal pit of prosternum: (0) Present, near middle of prosternum (Fig. 20). (1) Expanded to posterior extremity of prosternum as broad groove (Fig. 21). (2) Absent.
66. Prostemal shape: (6) Not or moderately constricted medialls, anterolateral processes shorter and less attenuate (Fig. 20). (1) Strongly and acutely constricted in from of middle, anterolateral processes large and attenuate laterally (Prentice, 1991, Fig. 3.3). State (1) is found onk in Apini and Metiponini.
67. First phagma: (0) Not bearing anterior end of internal ridge representing notaulus (Fig. 22). (1) Bearing on posterior surface anterior end of notaular ridge (Fig. 23).
68. Pre-epistemal internal ridge (corresponding at least in part to external pre-episternal groove): (0) Directed anterotentralls, more or tes straight, reaching down to or surpassing level of pleural scrobe. (1) Curved posteriorly toward scrobe; in this case the corresponding external groove demarks the anterior and lower margins of the swollen hypoepimeral area. (2) Short, not reaching level of scrobe, so that one cannot tell whether it is straight (0) or curved (1). (3) Absent. A long, straight ridge is present in most S-T bees, even though Melitidae exbibit State (3), presumably as a syapomorphy for the lamily. Presence of such a ridge is therefore consitered plesiomorphic. In l-T bees, howeret, such a ridge is long onls in Capnoprosopic, Neoficleliaand Oreopavtes,

Figs. 18-21: 18. Melissodes agilis, female; pronotum, anterior view, 19. Melitoma segmentaria, female; propleuron, lateral view. 20. Prosternum, female, ventral view, Melissoles agilis. 21. Same, Mesonyhium jensem.

Figs. 22-24: 22. Scutum, female, anterior view, Canpphorula apiformis. 23. Same, Melitoma segmentana. 24. Articulation between mesosoma and metasoma, sagittal section; a, b, Melesodes agilis; c. Purutphapedia sp.
and is present but only slightly surpasses the level of the scrobe in Leropodusand lsepeolus. These taxa ate so diverse that one wonders if the ridge mav have arisen independently in certain cases. II so, our polarization, white correct for bees as a whole, is wrong for 1 T bees. In this case, State (3), as in Melittidae, should be considered plesiomorphic.
69. Intermal scrobal ridge from mesepisternal scrobe posteriont wintersegmental suture: (0) Absent. (1) Present. Although
melittids are variable in this character, other S-T bees have State (0).
70. Breadth of metapleuron at level of upper metapleural pit divicled by height of metapleuron measured from lower end to apex of wing process: (0) 0.20 or more. (1) 0.19 or less. In Welittidae and other S-T bees the ratio is 0.21 to 0.30 .
71. Distance between metapleural pits divided by height of metapleuron (measured as for Character 70): (0) Over 0.20. (1)
0.10 to 0.19 . (9) 0.09 or less. The pits are far apart in Melitidae (0.20 to 0.35) and other S-T bees.

72 . Membrane closing space behind metastemum and hind coxae and extending to base of Sl : (0) Arising above free apex of metastermtim on ridge between the hind coxal condvles (Fig. 24a, b). (1) Arising from apical margin of metasternum, which therefore is not frce (Fig. 24c). In Apis, Braumsapis, Ceratina, Euglossini, and Parafidelia the free part of the metastermum is very shont, but they are coded as (0)
73. Propodeat prolile: (0) With ancarl horizomal basal zone, behind which it rather abruptly tuns downward to form the declisous posterior surface. (1) With a steeply slanting or sometimes consex basal zone or entirely declivom. This character is watiable in Melittidae as in some other major bee taxa, but State (0) is so prevalent anong S-T bees as well as sphecoid wasps that it must be plesiomorphic.
74. Profile of metanotum (and scutellum): (0) Subhorizontal or slanting, scutellum frequently convex but alse basically subhorizontal or slanting. (1) Vertical, not oxerhung by convex scutellum whose postcrior margin is more or less vertical. (2) Vertical, strongly overhung by scutellum whese posterior margin laces more or less downward.
75. Lower extremity of metapestnotmo (propodeal triangle) internally: (0) With vertical longitudinal ridge (third phragma) whose lower end is above marginal area of propodeunt (Fig. 25). (1) With longitudinal ridge extending downward to marginal area of propodeum. (2) With ridge extending bevond marginal area of proporleum as acute point visible through propodeal aticulating orifice when the metasomat is removed (Fig. 26), the ridge sometimes largeh absen but point clearls visible. (3) Absent.
76. Hind coxal articulation: (0) Clearty above submarginal groove of propodenm-metapleuron (Fig. 25). (1) At or below level of submarginal groove (Fig. 26).
77. Anticulation of propodeum with T1: (0) Forming a simple tooth at eaclo side of articulating orifice (Figs. 25, 96). (1) Forming two teeth at each side of articulating orifice (Fig. 27). State (1) is found only in Anthophorini.
78. Conjunctiva between metastemum, hind covae. and SI: (0) Entirely membranous. (1) With scterotized bars near coxal margins, meeting one another or fused near posterior point of metastermum (Snodgrass, 1956, Fig. 33C). The sclerotized bars suggest a remnant of the propodeal sternun, presem in many wasps, apparently lost in bees. State (1) is found onlv in certain members of the apine clade.
79. Netapostnotum (propodeal triangle) with hairs: (0) Absent. (1) Present and widespread. State (0) is found in most S-T bees including the Melitudae.
80. Hind trochanter with inner basal surface: (0) Angulate (Fig. 99). (1) Rounded (Fig. 28). State (0) is frequent in S-T bees.

8I. Degree of isolation of bases of bind tibial spurs by solerotized bridges aromod articulations of spurs: (0) None to partial (Cane's [1979] codes 0 to 2). (I) Amost complete (Cane's code $9+$ for both spurs). (2) Complete, with sclerotic bridge between spur bases (Cane's code 3 lor both yours). Like melittids, other ST bees exhibit State (0).
89. Inner margin of inner hind tibial spur of female: (0) Fincls serrate to ciliate (cuarselv sermate in Fideliinate). (1) Pectinate, with long, strong tecth. Many S-T bees, including melitids, exhibit State (0).
83. Outer hind tibial spur (usually inner also) of Female: (0) Finely serrate or ciliate. (1) Coarsely serrate. (2) Absent.
84. Basitibial plate: (0) Present at least in female. (1) Absent.
85. Hind tibial scopa (female): (0) Absent or convisting of unifombly dispersed hairs on outer side of tibia, i.e.. corbicula absent. (1) Surrounding large polished space on outer side of tibia, i.e., corbicula. State (I) is foumd in the apine clade and in Conephot mula in the Eucerini.
86. Apex of imer suface of hind tibia (femate): (0) Without comb of bristles. (1) With comb of bristles, i.e., the rastellum. State (1) is found in the apine clade.
87. Apex of hind tibia (female): (0) Not expanded dorsally, so that basitassus is articulated near dorsal margin and appears to arise near middle of apex of tibia. (1) Expanded dorsally, so that basitarsus is anticulated away from dorsal margin. The expansion [found onlv in the apine clade, except slighty present in Ctenopletra, coted (1)] is perhaps an aspect of broadening the tibia for a corbicula, but does not occur in Camephomula.
88. Base of hind basitarsus (female): (0) Not broadened. (1) Widened to form the auricle which pushes pollen up into corbicula. State (1) occursonly in the Apini, Bombini and Euglossini. In Englossini the structure is quite differem and it mas not be homologous to the aturicle of Apini and Bombini.
89. Hind basitarsus (female): (0) Civing rise to secoud tarsomere at apex. (I) Projecting distad above articulation of second tarsomere as process without an apical brush. (2) Projecting distad as in (I) but ending in a smatl dense brush (penicillus). The polarity indicated abose is based on State (0) in our outgroup, the Nlelittidae. However, many S-T bees have a penicillus. If the luss of the penicillus and process is a melitud apomorplay, then State (2) or possibl? (1) would be the propes plesiomorphic condition for L-T bees.
90. Shape of hind basitarsus (female): (0) Over 30 time as long as wide. (1) 1.5 times as long as wide or less. (2) 1.6 to 2.9 times as long as wide, i.e., intermediate. This character is variable in Melitidate but the other S-T bees studied, except Catpolicana, have State (0).
91. Under surface of middte tibia of female: (0) With oblique longitudinal tidge bearing a longitudinal brush (mid tibial comb of Jander, 1976) of hairs (Fig. 30). (1) Flat, with more scattered hairs (Fig. 31). This character is variable in melittids; polarization is based on the prevalence of State (0) in other S-T bees.
92. Niddle tibial spur: (0) Fincly serrate or ciliate, with : 1 ex simple. (1) Coursely serrate, with apex simple. (2) Serrate but ending in two to several large teeth or spines. State (9) is characteristic of Ericrocidini.
93. Row of stout setae on middle basitarsus (female): (0) Absent. (1) Present (Neff and Simpson, 1981, Fig. 5). State (I) is a feature of some oil-collecting bees.
94. Front basitarsal comb of female, a row of strong setae extending from apex of strigilar concavity nearly 10 apex of tarsomere, distat part of comb curred: (0) Absent. (1) Present (Neff and Simpson, 1981, Fig. 13). This is a feature of some oil-collecting bees. Similar combs in different positions on the basitarsus are present in Tetrapedia and Paratetropedia. They are autapomorphies and therefore bot included in the analysis.
95. Trunk of anterior tibial spur: (0) Simple. (1) With low expansion at right angles to selum, cunving apically into spinc of malus. (2) With strong expansion at rightangles to vetum, ending in strong angle or prong (Schönitzer and Remmer, 1980, Fig. 19). The expansion described for State (2) is the anterior velum of Schöntzer (1986).
96. Velum of anterio tibial spur: (0) Narow, I.s or more times longer than wide, usually lenticular, thus widest near middle. (1) Broad, 1.10 to I. 45 times as long an broad, quadrate. (2) About as long as broar ($0.95-1.05$). Although this character varies in Melittidae, the frequency of State (11) in other S-T bees justifies our polarization (see Schönitzer, 1986).
97. Anterior coxa with carina along inner margin, frequently bending laterad at base and extending partwas across base of coxa: (0) Absent. (I) Present (Roig-Alsina, 1989, Fig. 1). Statc (I) is characteristic of Osimini.
98. Arolia: (0) Present. (1) Absent.
99. Claws of female: (0) Cleft, inner ramus sometimes a tuoth. (1) Simple. Forms with the lower ramm broad, flattened, and blunt are nonetheless corled (0).
100. Number of submarginal cells in forewing: (1) Three. (1) Two. (2) None clearly defined, although faint veins ofteri present. State (9) is characteristic of Meliponini. Although variable in Melittidae, State (0) is so common in S-T bees and in wasps that it is clearly plesiomorphic. Reduction to two cells has occurred inde-

Fig. 25-31: 25. Propodeum, metapostnotum and hind coxa, posterior view, female, Macropis striromomatis. 26. Same, Camephorula apiformis. 27. Articular region onls, Habropola Inboriosa. 28. Right hind coxa and trochanter, of Anthidium porteraf, female, viewed from above. 29. Same, of Sizastra obliqua. 30. Right middle tibia, of Macropis veironematis, temale, ventral view and cross section near apical third. 31. Same, of Melissodes agilis.
pendently and perhaps even by different means. In mont cases it is br loss of the second transerse cubital but in some, the first transserse cubital may be lost. If this is true, of course there are two characters with identical plesiomorphic states, because loss of one vein is not homologotes to loss of another.
101. Wing vestiture: (0) Hairy throughout. (1) Partl bare.
102. I ength of marginal cell of terewing: (0) Equal to or longel than distance from its apex to wing tip. (i) Shorter than distance from its apex to wing tip
103. Apex of marginal cell of forewing: (0) Pointed, on wing margin. (1) Separated from wing margin, pointed. (2) Separated from wing margin, rounded. (3) Openor closed by weak vein. State (3) is found only in Neliponini. Although variable in Melittidae, State (0) is the principal one found in that lamily and in other S Thees and, being commonls associated with ohber plesiomorphic characters such as a large stigma, is considered plesiomorphic.
104. Stigma of forewing: (0) Longer than broad, length bevond sein r at least half as long as margin basal to vein r, margin within
marginal cell convex or sometimes straight. (1) Longer than broad, length bevond vein r less than half as long an part basal to vein r , margin within marginal cell concave. (2) Smatl, about as long as broad to nearh absent. (3) Narrow, almost parallel-sided, as in Apis. State (0) is the ustal condition in S-T bees; the exceptions are seemingly derived taxa like the Diphaglossinate and ColLetes (Colletidae).
105. Jugal lobe of hind wing: (0) Long. 0.5 times length of vannal lobe (measured from wing base) or more. (I) Short, 0.26 to 0.49 times length of vamal lobe. (2) Shorter, 0.25 times length of vannal lobe or less. (3) Absent. In S-T bees the jugat lobe is long, e.g., 0.75 times length of vannal lobe or more. State (0) is therefore considered plesiomorphic esen though the chatacter in satriable in the Melitidae.
106. Vein cu- of hind wing: (0) Shonter than second abscissa of vein M, transserse or slanting. (1) About a long as second abse issat of vein M. slanting. (2) Over wice as long as second abscissa of vein M, slanting
107. Gradulus of To: (0) Directed backward above and behind spiracle. (1) Directed toward or reaching spiracle. (2) Absent.
108. Base of T2: (0) W'ithout phagnatike apodeme. (1) With transterse, phragmalike aporeme. State (1) occursin certain XyIocopinat and Iithurge.
109). Gatulus of S 2: (0) Straight across medially or slighty cumed posterions in middle. (1) Bisimute, i.e., with two postriorls convex curves. (2) Absent. Ahthough most Welitidat have State (2), Hesperapia shows State (0) as do most other S-T bees.
110. Metasomal stemal scopa (female): (0) Absent. (1) I'resent. State (1) is principalls a character of Negachilidae but certain oilcollecting bees (e.g., Ctemopletora, Tapinotaspis) were also coded (1) although the sternal hairs hanction in gathering wil rather than pollen and probably evolved independenth from those of megachilids.
111. Apex of S6 of female: (0) Entire or gembly hiloleed. (1) Emarginate, with lateral projecting lobes (Roig-Alsina, 1991, Figs. 1113). State (1) in found omly in Nomadinae.
112. Apex of S6 of female: (0) Without vecialized coase setate. (1) With groups of spinelike selae (Roig-Alsina, 199I, Figs. 3-10). State (1) is fonmd in Nomadinat and Ivepeolini.
113. Surface of 75 of temale: (0) Writh prepegidial fimbria, hairs denser and longer than in hair bands of preceding terga. (1) Without prepegidial fimbria, i.e., similar to preceding terga.
114. Apex of 75 of female: (0) With polished margin of tergum absent or narow and parallel-sided. (1) With broad, bare polished margin wider in middle, margined basally by long, stiff setae
115. 15 of female: (0) Without preudopgidial area. (1) With pseudoprgidial area. State (1) requires State (1) of Character 113.
116. Prgidial plate of T6 of female: (0) Present. (1) Absent.
117. Th of female: (0) Not papillate. (1) Papillate or mimutels roughened, dorsal surface hairless. State (1) is found onls in the Fidelinate. In Neofidelia and Parafudia the papillate area is the enlarged prgidial plate; this is probably aloo true for Pararhophites.
118. Prgidial plate of $T 7$ of male: (0) Present, distinct. (1) Absent, but sclemtized apical rim suggests apex of plate. (2) Absent, without apical rim. This character varies among melitids but the presence of a prgidial plate is wo widespread among other S-T bees that it is probably plesiomorphic. An altemative case, however, can
be made for the repeated origin of this plate in males. Nost temales have a plate on 15 ; in both sexer it is on the last exposed tergum. The presence of the plate is clearly the plesiomorphic state in females (Chamacter 116) ; it has a function in nes comstraction. Probably it is functionless in males. It might appear in male simply as a result of a regulaton change, which could occur independently in different lineages.
119. Apex of T7 of male: (0) Entire. (1) With two conical points.
120. S7 of male: (0) With two or fon apical lobere. (1) Without apical lobes. (2) Short and transerse, without lobes. (3) Dise to whole sternum membranoun.
191. S8 ol male: (0) With single apical projection and moderate basolateral arms. (1) Without apical projection. (2) Bilobed apically. (3) Almost completely abeent (in Moliponimae)
122. Gonobase: (0) Forming a complete ring. (1) Not evident sentrally (absent or possibly fused to gonocoxites). (2) Almost ab)sent.
123. Gonocoxite: (0) Without sulcus or septum. (1) With senundateral oblique sulcus but no septum. (2) With septum, repre sented extemally by bulcus, separating basal and apical parts of gomocoxite (Figs. 33, 34).
124. Ventral parapenial lobe of gonocoxite: (0) Absent. (1) Present, whout strong setae. (2) Present, with strong, often peglike setae (Figs. 33, 34). This lobe in the ventroapical plate of Alodapini (Michener, 1975).
125. Gonostylus: (0) Articulated to gonocoxite although often with partial fusion (Fig. 33). (1) Mone or less indistinguishably fused to gonostylus (or absente), the resulting structure being called gonoforceps. (2) Double, there being wo nearly independent gonoswhar structures arising trom gonocosite. This chatacter is sariable (0 or 1) among meittids and other S-T bees. The decision as to polarization is based largely on the morphological viewpoint that articulation must be primitive in insects.
126. Tolsella: (0) Distinct, chelate. (1) A free sclerite but not chelate (Fig. 33). (2) Absent or fused to gonocoxite. The (0) state is as in most melittids as well as many other S-T bees.
127. Darsal bridge of penis values: (0) Short, not extended behind level of apodemes, or absen. (1) Expanded pusteriorly as spatha (Figs. 35, 37).

Figs. 32-34. Hexpeolus thodogye, male genitalia. 32. Penis and penis valse, lateral view. 33. Genital capsule, ventral view. 34. Internal view of right half of genital capsule, muscles remosed to show septum.

Figs. 35-38. Penis valves and penis, 35. Tapmotaspis Iucumana, dorsal view. 36. Tapinotaspis /ucumana, apical view; one penis vatue sectioned to show fit of its produced margin with median thickening of spatha. 37. Peponapis fervers, dorsal view. 38. Peponapis fertem, apical view.
128. Dorsal bridge of penis valves or spatha: (0) Lacking notches into which fit dorsal basal produced margins of penis ralves. (1) Distal margin (of spatha) with two nothes into which fit produced basat margins of penis valves (Figs. 37, 38). (2) Ventral surface of spatha with median thickening, lateral margin of which owerhangs to form ypace into which fits produced basal margin of penisvalue (Figs. 35, 36).
129. Penis with basiventral membranous projection: (0) Absent. (1) P'resent (Figs. 32, 33)
130. Base ol gomostylus: (0) Not extending basad. (1) Extending lanarl on immer surface of gonocoxite. State (1) is lound only: in letrapediini.
131. Number of ovarian follicles or testicular tubules: (0) Three. (1) Four. (2) Fise or more. Not many melittids have been examinced tor this character, hut all S-T bees studied have State (0). State (2) is found ond in some parasitic bees which have 5 to 13 and in

Apis. which is wery different, with 2 to 12 in workers, over 150 in queens.

Table 2 shows the states of the adull characters for the species lived in Table 1.

SELECTION AND CODING OF CHARACTERS OF MATURE LARVAE

The characters that we analyzed are those listed by McGinley (1981) that varied among L-T bees, and for which the plesiomorphic state was identifiable. Some were listed by McGinley (1981, Table 2) as "Cladistic Characters"; for others we believe the polarity is clear for L-T bees even though McGinley did not consider it clear for bees as a whole. For a few that Mchinley considered "Cladistic Characters," we found polarity dubious for L-T bees; wo excluded them from our list of characters. As with adult characters, plesiomorphic states were recognized usually using melittids as an outgroup. If there was variation among melittids, however, other S-T bees (colletids, andrenids) were used as a secondary outgroup. Moreover, if the other S-T bees differed as a whote from melittids, we concluded that the melittids probably had a family-level apomorphy, and considered that the other S-T becs exhibited the plesionorphic condition for our study. Our judgment as to the plesiomorphic state sometimes differed from McGinley's becanse our outgroups are clifferent; he clealt with bees as a whole while we are concerned with L-T bees. In some cases there are reasons to doubt our decisions as to polarity; these are indicated in the list of characters and in the following paragraples.

As discussed by Michener (1953), various characters of bee larvae seem to have more primitive states in most $L-T$ bees than in most S -T bees, even though the reverse is true for various adult claracters. That is, in L-T bees the states of such characters are more like structures found in more ancestral Hymenoptera or other insects. Examples are Characters 1 (setae on the head capsule) and 20 (size of the antemal papilla). In both cases, the better developed state (longer setae, slender projecting papilla) is no doubt plesiomorphic for Hymenoptera as a whole. The reverse may be true for aculeate Hymenoptera, since they presumably erolved from parasitoids (Whitfield, 1992) in which larval structures are greatly reduced. Be this as it may, all Melittidae except Meganomia have reduced head setae and moderately developed to absent antennal papillae. Since Meganomia has many derived adult features (Michener, 1981), it is unlikely to exhibit the basic melittid larval structure and we therefore regard the remaining members of the Melittidae as good indicators of the plesiomorphic states for the analysis of the $1,-\mathrm{T}$ bees. We therefore coded reduced head setae and reduced antemal papillae as (0); that is, among $L-T$ bees, development of longer setae and antennal papillae is derived. Character 48 (labial palpal length) is similar except that the deviant melittid is Macropis, also a melitud with many derived adult features. In all these cases most S-T bees exhibit the character state that we have coded as (0). Of course a frequent state is not necessarily ple-

Table 2. Matrix of Character States for Aduh.

The characters and states are explained in the Annotated List of Adult Character

1234567991111111111222222222231333333334444444444555555555566666666667777777777888888888899999999991111111111111111111111111111111121 01234567890123456789012345678901234567890123456789012345678901234567890123456789012345678900000000001111111111222222222233 000

Eremapis
Teratogn teratogn Isamalop Examalop
Tapinota Tapinarn Paratetr Monoeca Caenonom Ancylose
Oladasia Dladasin ptilothe Tecraped coelioxo Eucerino Canephor Cunepho
Molisaod
Svagera
Peponapi
Peponapl
Anthopho
Anthopho
Mabropod Centopel Epichar
Xeromele
zacosma
thyreus
Eyiczoci Mesonyen Mesoplia Rhathymu Parepeol Ecclitad Osivis Lelopodu Melectol
Neolarra
Caenopro
Triepeol
Epeolue
Rhogepeo
Hrachyno
Brachyno
Kelita
centriae
Byastas
Manuelia
Xylocopa
Macrogal
Brauneap
Aple
Melipon
partamon
Eutriees
pararhop
Neof idel
Parafide
Trachuaa Anthidiu Moplit Onmia Megachil
Coedioxy
Melitts
Melitta
Dasypoda
Mesperap
Meganoma 021110100000200000200200010110001100011110010011011200100000000000100000011000100000000101000000000101000000100000002000101021000 ? $0020110100000200000200200010110001100001110010011011200101000000000100000011000120000000201000210000001000000000000001000101021100 ?$ 020110100000100100200200010110001100001110010011011200100000100000101000011001020000000201000210000101000000000000001011101021000 ? 00201001000000000001012000101100011000011100100110112001000001000001011000110010100000002010002100000010000000000000010021010210001 020100100000200000211100010110101100001110010011011200101000110000101112020001021000000212000110000011020000100000000002101021200 ? 0000100100000200000210200010110101100001110010111011200101000110000101111021001021000000211000110000001010000000000000002101021200 ?
 011110100000200002002000101101011100011100100110112011010001100002011111210010200000001100002100000020100000000000020021010212001 00101001000002000002202000101100011100011100100110112001010001100001010111110010110000000112112100000020100000000000000121010212002 0010100100000200000220200010110101100001110010011011211100000010000211211021001021000000210100010100002020100000000000002101021200 ? 00111101011002010002202000101100011000011100101100112001010001000011001011210000100000002010000100000010000000000000020021011210001 $00101101001001010002202100101101121001 ? 1210010010011200101000100001101201121001020000000201000000000001000000000000002102101021200$? 001011010010020100020020001011011110000111100101100112001010001000011012010210010200000002010000000000010000000000000021021010212001 $00101101001002010002002000101101111001 ? 1111010111011200100000100001101101121001020000000101000000000001000000000000002102101021200$? $00001101001002010002002000101101111001 ? 11110101100112001010001000011012011210011200000001010000001000010000000000000021021010212001$ 00001101000001000002011000101100011100111100100101112001000001000001012010210010012000000211001101000010201000000000021101001200012 $00001101001000010012011000100100 ? 11000111112100101112001000001000001012010210010000100000211000101000010200 ? 0000100002110000210001$ 2 $00 ? 01001010002000002202000101100011100011101$:001111120110000011000?1?10000?1?010100000002010001100000022100?0000000002100112021000? $0010100101010 ? 00000 ? 2020001011000110000111001001011121010100010 ? 00 ? 1 ? 10000 ? 1 ? 010200000002110001100000010100 ? 0000000002002102021000$? 1111001010101010002102000101100010110011100100101112001020001000001000010210010000010002110000111001012000000000000000001020211002 00112001010101000002202000101100011010011100101101112101020001100001101010210010200000002210001100010012100010000000000001020211001 00111001010101000002202000101100011000011100100101112101020001200001010010210010200000002210001100000022000010000000000021020211001 00111001010101000002202000101100011010011100101201112101020001100001011010210010200000002110001100000012000010000000000001020210001 00112101010101010002202000101100011010111100101101112101020001100001111010210010200000002210000100000012000010000000000021020211001 0010110100000000000220200011110001100000210110010111200100000001000200001171101000000000210000020000112211000000000002110100020001
 $111011010000001002202000111100010000002100100101110 ? 01000000010002000011111010000000002100000200001022110000000000020101002200001$ 00001001000000000002001000101100011000001101100101111211100000001000100001131101000000000220000020000102110000000000002110101210000 ?

 $0001111000000000002212000100100 ? 10000112100120101111101010000010002000012210011200100000010000101001121120000001100021021210110001$ $00001101010000000012002000100100 ? 10100012110100101112101100000001001000011210001000100000002000000001111222020001000021111210200002$ 0000110101000100001201200010010001000001211010010111210110000000100100101221000100010000000200010000112122202000100002111121010000 ? 000011010100000000120120001001000111001121101001011112101100000001001001012210001000100000002000100001121122020001000021111210200001 $00001101010001000012002000100100 ? 1100011111111110101111110100000000100100001121001100010000001000210000002021000000100002110111221000$? 0000110100000100000211101010110001100001110010010011200100000000000200101021000100010000001000001000002020000000110000010121211000 ? 00001101000000010002102010100100011000011110010010011200100000000000300101021000100010000001000001000002020000000110000010121211000 ? 00011101000000000012012010101100011000111120010020011200100000000000200001011000100010000001000001000000020000000110002011100011000 ? 00001101000000000012002000100100011001 ? 1110010110011200100000001000200001021001100010000101000000000001010000000101002011100120000 ? $0000110100000000001220200010010001100001110010010111200100000001000000001121000100010000021000000000111010000000100101011000012000 ?$ 000110100000000001220200010000001100011110010010111200100000001000100001021000100010000121000000000101010000001100101010100011000 ? $000012010000000001020100001000000110010111001001101110010000000000020000002100010001000000100000000111 ? 0200000101000000101220110102$ 00000111000000010002010000100000011000111110100100111001000000000000000011310001000100000000000000010010201000101000021111001200002 01011111000000110002010000100000011000011100120100111001000000000000002010210011000100000010000000010010201000101001000110000200002 00011101000000000002110000100000010000112100100101101001000000000002000011210011000100000010000000000020200000111010000101000100102 00011101000000000002100000100000010000112100100101101001000000000001000011310001000100000010000000000120200000111010000101100200102 00011210000000000021100002000000200001212100100201102001000000000002000011210011000100000010000000000020200000111010000101210120007 0000111100000000010201000010000001100011110010010010100100000000000200001111000100010000001000000001002020000011101000010100120002 00011101000000110102010000100000011000111100100100101001000000000002000011310001000100000010000000010020200000111010000101001200002 00001101000000010102010000100000011000111100100101122001000000000002010000210011000100000010000000000000200000111010000101222110102 0001100100000011020201000010000001100001110010011010100100000000000200001101000100010000001000000000000020000001101000010122011000 ? 00011101000000120112010000100000011000011100100110100001000000000002000011010001000100000010000000000000202000011010000101100210002 0001101000000011102010000100000011000011100100100100001000000010003000010210001000100000010000000010020200000111011000100220210102 00001101000000000102010000100000011000012110100100101001000000000001000010210001000000000010000000000020200000111010000110220110102 00001000010000110001010000101000011000111100100110112001000000010001000010110001000000001010000000000010201000001000020201010210001 00001000010001000000010100101001010000110110100100112111000000000001000010210021000000001010000201001012100000001000020211001210001 010010010100001100020101001011000110001111100100100122001001000010001000000210001200000000010000000000020101100001001020211001210001 0100100101000011000300010010000001010011110010010012200100100001000110000021000100000000001000000001002000110000100102021101021000 ? 01001101010000110002010100100000011100111100101100112001001000010001100000210001000100000010000000010000001100001001020211020210001 $00000001000001011002012000001000011001 ? 0111101201001220010001101021010000120101112321111121110002100000023002000001001020212001200002$ $00000001000001011002012000100000011000001110120101122001000110112101001112010011 ? 32111101110000100020033001000001001020132000210001$ $0100000100000 ? 011002012000100100 ? 11000001110120100222001000110112101000112010011 ? ? 2111101110000100120030101000001001020132000210001$ 01011101000027000002202100101100012100001101100101112111000100100001101012210111210111111110002101000022200000001001020101000110001 $0101110101001 ? 001002201100101100 ? 1110000110110010111211100010010000120101221011121011111011100210100002230000000100102010100011000 ?$ 0000000100000010000002000100000011100001100100110112011000001000001000000210011001100000011000000011010000001001101110100001000000 $0010101110000000000000100010100001000010210010010011200100000100000000001021000100110000001100000000101100000100110010010000000000 ?$ $001000001000000100020 ? 1000100000010110 ? 021001101011120010000011 ? 00 ? ? ? 10011 ? 1 ? 011001100000112000000001011000 ? 0100110010000000010000 ?$ 1000001010000010000001000010001001110010111010001011201100100100000301001021001100000000001000000111001000010100100000011000120000 ? 100000110000001100000100001010100111000011001001001112001000101100003000011110011000100000010001001010022101001001001020100000200000 1001001010000011000000000010001001110010110010010011200100010100000100000011000100010000001000000011002120100100100102010100010000 ? 10010010100000100000010000100010011100101110100100122001000101101003000011110001000100000210000000110021101001001001020300001100000
 10010012000000100002110000100010 ? 11100101100100100112001000100000003000011210001000100000010000001110021100000001001020300001200000 $0100120100000200000120100010110001000001010000000000200101000101000101002021001001000010111000100101002000000100000002002100021000 ?$ $00001000000000000000000001100000000000000100000000000 ? ? 0000001010001000000000000000000000100000100010000000020000000000000000000000$ $00001000000000000000201001100100000000000100000000000 ? ? 000000001000100001000000000000000020000000000000000002000000000000000100000 ?$ $000010000100000000002000011000000000000010000000000110000000001000310001000000000010000001000000001000010002000000002000000000000 ?$ $00001000000000000000200000100000000000000100000000000 ? ? 0000000010003100000000000000000000001000000010000000000000000000000001000000$
$00001000000000000000202001100000000000000100000000000 ? ~ 20000000010003100010200000000000000000000100000021000020000000000000001100000$
siomorphic, but we believe that in these cases the plesiomorplic condition for L-T bees is widespread in S-T bees; any altemative negates the use of Melittidae as the closest outgroup and sister group of L-T bees.

For severat other characters $(43,44,46,47,49)$ the situation is less clear because there is less manmity in the Melittidae, and melittids with more plesiomorphic character
states such as Melilla sometimes have the more futh developed structures. However, since these characters are probably all functionally related in bees (in connection with cocoon spiming, see below), we believe that they have to be treated like Characters 1,20 , and 48 , i.e. with the reduced condition being considered ancestral for $L-T$ bees

To summarize, other authors considered the better de-
veloped states of the characters listed above as ancestral and the reduced states as apomorphic. Thes were considering bees as a whole. For L-T bees only, we must reverse the polarity, in view of evidence from Melittidae, our first outgroup. ln addition, il aculeates arose from parasitoids that show the reduced states, we believe that the polarity that we advocate for L -T bees may be appropriate for all bees. Reversions from the reduced states to more developed states may have occurred independently in various aculeate groups such as bees, sphecoid wasps, etc.

Most or all of the characters listed above may relate to cocoon spinning or the sensory apparatus needed for cocoon spinning. In L-T bees, taxa that do not spin cocoons, like the Nomadinae, Xylocopinae, and Anthophorini. have (secondarily) reduced states lor these characters, although most L-T bees have the better developed states and spin cocoons. Nost S-T bees do not spin cocoons and have the reduced states. However, it is obvious that developed states of these characters are not abways associated with cocoon spinning. For example, many parasitoids spin cocoons although they have extremely reduced cephalic structures. Moreover, the cocoon-spinning S-T bees (Diphaglossinae in the Colletidae. Rophitinae in the Halictidae and some Melitidae) are equivocal in development of these structures; for example in the Diphaglossinae, antennal papillae are small. galeae are absent, but palpi are rather long.

One could argue that, il the above explanation is correct, one should list only a single character, mather than overweighting it with several manifestations thereof. However, none of the characters are perfectly correlated; each provides some different information. Given our present knowledge of insect development, it seems umwise to do more than note this situation. We suspect that many other characters are also not inclependent.

That cocoon spinning, involving silk production and spinning behavior, would evolve, after having once been lost, seems less likely than redevelopment of the individual structural features discussed above. There are therefore legitimate differences of opinion as 10 polarities. The subject deserves restudy by persons thoroughty familiar with bee larval characters.

ANNOTATED IIST OF LARVAI CHARICTERS

These characters are more fully explaned by NoGinles (1981). The number of each cbatacter is followed by Incinles's mmmber in parentheses.

1 (1). Setac on head capsule: (0) Short and difficult to see. (1) Long and distinet. All melittids except Meganomia, which is probably a derived melittid, and many other S-T bees, have State (0), which we tentatively consider plesiomorphic for $1 .-T$ bees, although presence of long setae must be plesiomorphic for aculeate Hymenoptera.

2 (2). Spiculation on dorsal suface of labrum: (0) Absent. (1) Present. Nost melittids, all colletids and halictids, and some andrenids have State (0), which we tentatively consider plesiomorphic.

3 (3). Fpipharnogeal spiculation: (0) Present. (1) Absent.
4 (4). Hypopharygeal spiculation: (0) Present. (1) Absent.
5 (5). Dorsal and mesal maxillars spiculation: (0) Present. (1) Absent.

6 (6). Pigmentation of head: (0) light. (1) Heave. State (1) is known, among L-T bees, only in certain Nomadinae.

7 (9). Vertex: (0) Rounded. (1) Produced lomard.
8 (10). Swelling aboue antennat: (0) Absent. (1) Present.
9 (14). Anterior tentorial pit: (0) High. (1) Low: Mc Ginlev's (1981) States 2 and 3 are limped and coded (0); his State I is corled (1). All mellitids have State (θ), as do most colletids and the genus Androna. We therefore thinh that our polarity is appropriate for a study of L-T bees.

10 (15). Posterior tentorial pit: (0) At junction of hypostomal ridge and posterior thickening of head wall. (1) Anterior to or below this point. Anong L - T bees. State (1) is found only in Nomadinate.

11 (16). Posterior thickening of head wall: (0) Well developed. (1) Weakly developed. (2) Absent medially.

12 (17). Median portion of posterior thickening of head wall: (0) Straight. (1) Curving forward.

13 (18). Posterior thickening of head wall: (0) Single. (1) Appearing double.

14 (19). Nedian longitudinal thickening of head wall: (0) Absent. (1) Developed only dersally. (2) Extending forwatel to level of epistomal suture. Since nearly all colletids and and enids have State (0), as clo all melittids except Meganomia, which has State (1), and State (2) is found only in some 1-T bees, we consider State (0) plesiomorphic. It is possible. however, that State (1) is plesiomorphic instead of State (0).

15 (20). Hypostomal ridge: (0) Well developed. (1) Weak.
16 (ㅇ1). Hy postomal ridge: (0) Simple. (1) Divided posteriorls. State (1) is known only in certain megachilids.

17 (23). Angle of hypostomal ridge to posterior thickening of head wall: (0) Obtuse. (1) Perpendicular.

18 (24). Pleurostomal ridge: (0) Well rleveloped. (1) Weak.
19 (26). Epistomal ridge or depression: (0) Well below level of antennae. (1) Arched upward to or above antennal level.

20 (30). Antennal papilla: (0) Enlarged basally and moderately developed to virtuall absent. (1) Well developed. slender and prosjecting. Although it makes sense to believe that reduction of larval antennae might be a progressive process, all S-T bees except Meganomia, a derived melittid, have State (0), while manv 1--T bees have the better developed antema of State (1).

21 (31). Number of antemal papillar sensilla: (0) 2-5. (1) Nore than 5 . State (1) is found onls in certain parasitic Anthophorinae. 22 (32). Clipeal lenglh: (0) Noderate to long. (1) Short.
23 (33). Frontoclypeal area, in lateral view: (0) Nol strongly producerl. (1) Rounderl. greatly produced. Among all bees, State (1) is foumd only in two nomadine genera and two melittid genera. [As elsewhere, this statement is based on McGinlev's (1981) matris; a third nomadine genns is now hnown to bhow State (1) (Rozen and MoGinlev. 1991).]
$24(34)$. 1 abrum in lateral view: (0) Moderately projecting bewond clypeus. (1) Strongly projecting. Among L-T beco State (1) is found onlv in Nomadinae.

25 (35). Labral tubercles: (0) Present, well defined. (1) Absent or pootl defined. This relates to the two rounded marginal tubercles. The pointed tubercles on the dise of the labrum found in Numadinae are evidently not homologons (J. Rozen, in litt., 1993). Although melittids hase State (1), State (0) is characteristic of nearly all andrenids, halictids and colletids and is therefore considered plesionorphic; presumablv State (1) is an apomorphy of melittids.

26 (39). Sensilla-bearing swellings on labral apex: (0) Present. (1) Absent. Because such swellings are present in most bees including our outgroups, we have reversed the polaritv indicated by McGinlew

27 (40). Epipharynx: (0) Not produced. (1) Produced as distinct lobe. State (1) is found onls in two genera of Nomadinae.
$28(44,45)$. Mandibular spicules: (0) Absent or short. (1) Long and hairlike.

29 (47). Mandibutar apex, ignoring teeth if present: (0) Acute. (1) Broadls rounded or truncate.
$30(48,49)$. Nandibular apex: (0) Simple. (1) Bidentate with
dorsal tooth longer or teeth subequal. (2) Bidentate with ventral tooth longer. All colletids and most andrenids, halictids, and melitids have State (0), which we therefore consider ancestral. The polarity is tentative; given the multiple teeth of wasps, one would expect two teeth to be ancestral to one

31 (51). Apical part of mandible: (0) Not attenuate. (1) Attenwate.

32 (52). Mandibular cusp: (0) Well or moderately defined and produced. (1) Weakly defined or absent.

33 (53). Cuspal projection of mandible: (0) Absent. (1) Present.
34 (54). Nandibular cusp): (0) Nultidentate. (1) Smooth, edentate.

35 (55). Teeth on dorsal apical edge of mandible: (0) Present. (1) Absent.

36 (56). Ridge delimiting apical mandibular concavity: (0) Hidden from above by dorsal apical edge. (1) Visible from above, exceeding dorsal apical edge.

37 (57). Nandibular apical concavity: (0) Weakly to moderately developed. (1) Surongly developed.

38 (58). Nandibular concarity: (0) Oblique, not scooplike. (1) Scooplike.

39 (61). I abiomaxillary region: (0) Moderately recessed. (1) Produced. (2) Strongly recessed. All andrenids and manv members of all other S-T families including half of the melittids have State (0), which is tentatively considered plesiomorphic for $1,-1$ bees. Our treatment here is similar to that of other characters that seem to be associated with cocoon spinning. (See sections on Selection and Coding of Characters of Nature larvac.) McGinler (1981) and J. Rozen (in litt., 1993) regard State (1), produced, as ancestral but for the reasons indicated we suspect that the intermediate condition, State (0), is ancestral for thin studs.

40 (62). Labinu and maxilla: (0) Distinct. (1) Fused.
41 (63). Labinm: (0) Exceeded in length by maxilla. (1) Subequal to maxilla. (2) Exceeding maxilla.

42 (65). Inner apical maxillary surface: (0) Rounded. (1) Produced mesally: In all Andrenidae, nearly all colletids, and mellitids except Dasypoda, State (0) is found. We therefore have changed NaCinley's polarization for the study of $1-T$ bees

43 (68, 69). Maxillary palpus: (0) Elongate, usually twice as long as basal diameter. (I) Apparentlv absent. (2) Shorter than basal diameter.

44 (70). Maxillary palpus: (0) Slender. (1) Robust. Since State (0) is found in all andrenids and many colletids, and in half the melittid genera listed by McGinlev, it is tentatively regarded as plesiomorphic.

45 (71). Location of maxillary palpus on maxilla: (0) Apical. (1) Dorsal. (2) Ventral. State (0) characterizes all bat one melittid and considerable numbers of colletids and andrenids. It is therefore tentatively regarded as plesiomorphic.

46 (72). Galea: (0) Absent. (1) Present. Nearly all S-T bees except three melittid genera lack the galea, while it is present in mams $1-T$ bees. See discussion in the section on selection and coding of laval characters.

47 (73). Labial division into prementum and postmentum: (0) Weak or absent. (1) Strong. All andrenids, nearly all halictids, and about half the colletid, have State (0), which also occurs in the melittids Hesperapis and Capicola. We tentatively accept the polarity indicated. This character is largely associated with Character 39 and the same comments apply to both.

48 (76). Labial palpus: (0) Shorter than maxillary palpus. (1) Subequal to or longer than maxillary palpus. State (0) occurs in all andrenids, most colletids, and all but Macropis in the Melittidae. This state is therefore considered plesiomorphic for 1.-T bees.

49 (77). Salivary lips: (0) Greatly reduced or absent. (1) Well developed. Athough variable in melitids, the presence of State (0) in all andrenids and nearls all colletids and halictids suggests the polarity indicated.

50 (79). Salivary opening: (0) Transwerse. (1) Recumed. (2) Circular or oral. All the melitids have State (0). Other S-T bees
mostly have states not represented among L-T bees, although some colle tids have State (0)

51 (80). Salivary opening: (0) Nearly as broad as distance between labial palpi or broader. (1) Much narrower. Athough melittids are variable, all andrenids and halictids and all colletids except Colletes have State (0), which is therefore considered plesiomorphic.

52 (81). Position of salivary opening on labium: (0) Apical. (1) Dorsal. State (1) is found onlv in Xvlocopinate.

53 (84). Ilpopharyngeal size: (0) Nomal. (1) Enlarged. Among L-T bees, State (1) occurs only in certain parasitic bees.

54 (85). Apex of hypopharinx: (0) Rounded. (1) Bilobed. Although variable in melittids, thin characten is as State (0) in all halictids and andrenids and nearly all colletids.

55 (87). Hypophyrangeal groove: (0) Distinct. (1) Absent or indistinct.

56 (88). Body integument: (0) With patches or transerse rows of conspicuous spicules or setae. (1) Without conspicuous spicules or setae. Rozen (1987, p. 8) showed that this and the next character, an treated by McGinley (1981), requite restatement. While constrained by the character states as recorded by McGinlev, we have tried to word the characters in wav that remain meaningful for analysis. The "setae" of many megachilids are primarils elongate, erect spicules. A few true setae me intermixed, and are as long as the spicules. The hairy appearance of most megachilid tarvae is a strong apomorphy (Character 57). Character 5 has to do with patches or rows of spicules and setae, mostly directed backward, not comparable to the generally distributed erect hairs found on many megachilids.

57 (89). Borly integument: (0) Apparentlv nonsetose. (1) Seemingly conspicuonsly setose. Sphecids and most megachilids are comspicuously hairy, and as pointed out by McGinley (1981) and Nichener (1953), this should be the plesiomorphic state. Ilowever, near absence of hairs in all S-T bees except certain melittids requires uss to polarize this character as indicated above, implying a reversion in megachilids. Presence of hairs in most allodapine larvae shows that they can appear in tines that nearly lack them.

58 (92). Paired dorsal darkened areas on thoracic segments: (0) Absent. (1) Faintly evident.

59 (93). Bodh length: (0) Moderate. (1) Long.
60 (94). Body form: (0) Robust to moderately robust. (1) Slender.

61 (95). Body, as seen in side siew: (0) Widest medially. (1) Widest posteriorls:

62 (101). Median dorsal abdominal tubercles: (0) Absent. (1) Present.

63 (102). Dorsal conical tuberdes, mo per segment, usually darkened and pointed, on thorax and at least first abdoninal segment: (0) Absent. (1) Present.

64 (105). Venter of abdominal segment IN: (0) Not protuberant. (1) Protuberant.

65 (106). Lengtb of abdominal segment N: (0) Morlerate. (1) Long. (2) Short.

66 (109). Venter of abdominal segment X: (0) Rounded, not produced. (1) Produced. This character is sufficiently sariable among S-T bees that the polarity has to be considered doubtul.

67 (I11). Dotsum of abdominal segment X: (0) IVithout transverse line or ridge. (1) With transerse ridge. (2) Itith transuerse line. This character varies in Melittidae but shows State (0) in all Andrenidae and nearly all Colletidae.

68 (113). Anus positioned: (0) Apically. (1) Dorsally. (9) Ventrally.

69 (116). Spiracular sclerites: (0) Absent. (1) Present.
70 (117). Spiracular atrial shape: (0) Subglobular to sul)quadrate to broad and rounded. (1) Very broad and shallow. Because State (0) occurs in all mellitids and andrenids as well as some colletids. we consider it plesiomorphic for 1-T bees.

71 (118). Spiracular atrium: (0) Not or little produced above body surface. (I) Strongly produced. State (0) is found in almost all S-T bees except some melittids.

72 (119). Spiracular atrial wall: (0) Not ridged. (1) Ridged.
73 (120). Spiracular atrial wall: (0) Without spines. (1) With small spines or denticles. (2) With long apines. Spinen or denticles are widespread and may be plesiomorphic for bees as a whole, but since all andrenids, nearly all melittids, and mans colletids have State (0), we consider it plesiomorphic for this study.

74 (121). Spiracular atrial rim: (0) Present. (1) Absent.
75 (129). Widh of spiracular peritseme: (0) Narrow (even absent) to moderate. (1) Very wide.

76 (195). Primary tracheal collar: (0) Smooth. (1) Spinose.
77 (126). Spiracular subatrial length: (0) Aloderate, more than two to four times atrial length. (1) Over four times atrial length. (2) Twice atrial length or less. Although all melittids except Meganomia have State (0), variability in other S-T bees makes our polarity for this character inconclusive.

Table 3 shows the states of the lanal charaters for the species included in this studs.

PHYLOGENETIC ANALISES

Computer analyses of exemplar species using data in the character matrices (Tables 2 and 3) were made with Hennig86 1.5 (Farris, 1988) running on a Zenith 386. Certain analyses were also made with PAUP 3.0g (Swofford, 1990) using heuristic search with TBR branch swapping and the Deltran option. The results were identical to those obtained with Hennig86. Analyses that resulted in more than one tree were each summarized by a consensus tree using Hennig 86.

Maddison (1991) has demonstrated that sometimes multiple islands of minimum-length trees exist and that not all of them are found in simple analyses. Therefore, using the trees produced by the algorithms h, h^{*}, m, and m^{*} provided by the Hemnig86 program and two arbitrarily constructed trees, a multiple search for minimum-length trees was made applying the branch swapping algorithm bb*. For most analyses a single set of such trees was obtained, but in the study of larvae (Analysis E) two islands of trees were found.

In studying the cladograms, and seeing that a character state appears at wo or more widely different places, it is tempting to re-examine the characters, discern differences between apparently distantly related possessors of a given state, and decide to make two or more characters, thus eliminating apparent convergence. We have done veny little of this, although the result would have been cladograms with higher consistency indices. This sort of activity is likely to be highly subjective, because with the desire to improve the tree, one can often find differences between similar structures in different clades that can be interpreted as indications of independent origins. It seems better not to engage in such potentially circular activity except in the clearest cases. See also Conchuding Remarks.

In the amalyses presented below, we have not introduced differential weighting of characters. To do so ad hoc is arbitrans. We tried the successive weighting option of Hemnig86 but as might be anticipated, it accentuated the predominance of correlated characters related to the parasitic way of life.

Within most of the analvses $(\mathrm{A}$ to H) the various mini-mun-length trees were similar to one another in the topology of larger units and to a considerable extent were fully
resolved. We therefore selected a minimum-length tree for presentation of some of the analyses. When such trees differ, resulting in polytomies in consensus trees, the matter is mentioned below, as are the two islands of trees in Analysis E.

The following is a list of the analyses:
Analysis A was based on the full matrix (82 taxa, 131 characters) of adult characters. (See Table 1 for list of taxa, List of Adult Characters for character state codes, and Table 2 for the matrix.) Tree length (L) was 894 , nmmber of mini-mum-length trees (T) was 756 , consistency index (ci) was 19, retention index (ri) was 65 . One of these trees is shown as Cladograms 1a and $1 b$. After the first branch swapping a full buffer prevented further swapping. For this reason Analysis B was performed.

Analysis B was based on a matrix reduced in information content by collapsing to polytomies four groups, namely, Melittidae (Cladograms la, 1b, Node 2), Megachilinae (Node 7). Emphorina (node above 34), and Eucerini (node above 39). Collapsing was done by changing characters of taxa that varied within the group to the state found in the root of the group in Analysis A. When the state of a character in the root was equivocal it was not changed. Thus the matrix was the same size as for Analvsis A but indicated much less diversity for the four groups listed. For Melittidae, character 73 was equivocal and character 100 was also not collapsed because to do so would have made two submarginal cells plesiomorphic, whereas we believe that three is the plesiomorphic condition. Other characters that were equivocal were, for Megachilinae, 79 ; for Emphorina, 21; and for Eucerini, 121. Statistics for Analysis B: L. 762, T 270, ci 29, ri 70 . There was no problem of a full buffer limiting swapping. No cladogram is provided to represent results of Analysis B because tree topologies were so similar to those of Analysis A.

Analysis C used the same modified matrix as for Analysis B, except that five characters (19, 29. 84, 105, and 113) that seem related to cleptoparasitism were omitted. The derived state of each of these characters is found only or largely among parasitic bees and the ancestral state among nomparasitic bees. This manipulation was made because in Analyses A and B, features characteristic of parasitic taxa appeared as ancestral for both parasitic and nonparasitic bees. We reject hypotheses that a nonparasitic bee could evolve from a parasitic ancestor, because of the parasites' loss of behavior and structures (like the pollen-carrying scopa) necessary for successful nest construction and provisioning. Statistics: L 719, T 176, ci 23, ri 70. The basal parts (i.e., to the tribal level but largely without genera) of one of the trees is shown as Cladogram 2 a, and a simplified version in Cladogram 2b.

Analysis D used the matrix of Analysis A except that all cleptoparasitic taxa were omitted, resulting in 54 included taxa. Like Analysis C, this was an effort to detemme whether the parasitic taxa were greatly influencing, because of convergence misinterpreted as homology, relationships shown among nonparasitic taxa. Statistics: L628, T 1712 plus over-
lable 3. Matrix of Character States for Nature Latrat
The characters and states are explaned in the Annotated List of Larval Characters.

1234567891111111111222222222333333333344444444445555555555666666666677777777 01234567890123456789012345678901234567890123456789012345678901234567

Ancestor 000 Macropis 01001000000000000000000010000000000000102000011110000001000000000110000000000 Melitta Dasypoda Capicola Hesperap Meganomi Ctenople Stelis Lithurge Dioxys
Hoplitis coelioxy Trachusa Megachil Osmia
Anthidiu Dianthid Ashmeadi Fidelia
Neofidel
Parafide
Pararhop
Melecta
Thyreus
Zacosmia Rhathymu Acanthop
Isepeolu Protepeo Triepeol Epeolus Nomada
Oreopasi Pseudodi
Ammobate Morgania holcopas Neopasit Neolarra
Xenoglos Peponapi Melanoma Paranoma Centris
Epichari
Habropod Anthopho Diadasia Melitoma Exomalop Xylocopa Ceratina Allodape
Paratetr
Apis
Bombus
Eufiesea Melipona Trigona

01001000000000000000000010000100000000102000011010000100000000000010001000000 00000000000000000000000010000200000000000121201000100000000000000010001000000 00000000000000000000001010000000000000000021000000100000000000000000000000000 00000000000000000000001010000000000000000021000000100000100000000000001000000 10000100000001000001000010000000000000102000011010000000100000000010000000002 10001000100001000011000010001101011011102100201110000100100000000011000000102 10111000100100010011010010000201010011101100201110000101100111002001010120002 $101100001001010100100100100002001110111011000011101001001001100020000000200 ? 2$ $101110001001000010110100100002110100001021002011100001001001100000000001200 ? 0$ 10111000100101010010010010000201011011000100201110000101100011000001001001001 10111000100100000011010010001201011010102100201110000101100111002001000110002 101010001001010100110100100010010 !10111101100001110000101100111002001000020002 $101110001001010100110100100002000110111011002011100001011001110020010001200 ? 2$ $101110001001010100110100100002010110011011002011100001011001110020010001200 ? 2$ $101110001011000101110100110002010100011021002011100001011001110020010001000 ? 0$ 10111000101100000111010011000201010011101100201110000101100111002001000100000 1011100010110000011001001000020101100110110120101000000110011000010001?00???2 $100000001000010000 ? 1010010001200111011102100201110100100100110002011010010012$ 10111000100101001011010010000200111011102100201110100101100110002011000010002 10000010100001011011010010001200111011102100201110100100100110002011010010012 00111000100101011010000011000211111001102100201110100100000000002001001000101 00000000000001000001100010001000000011002000201010000101001000000011000020002 $01000000000001001001 ? 00100001001011011002 ? 00200000101111000000000001000021002$ $001010000000000000010000100000000110112 ? 200000111000 ? 1 ? 1000000000011000000002$ 00000001000001000000100010001001011011102001201110001100011000002001000020002 00100000100001001010100000001001011011102001001010001110010100002001000010002 00101000102000001100100010000011010000102000001110000111000000000000000000100 101100001010010001010000100000010100110011010011101000101000010000110?1?????? 00001000011001101100000100000000011000212021200002101010001000001000101010012 00001000011001101100000100000001011000212021200002101011000000000000101010002 00001100012011100100000100100000000000212001000002101010000000000000001000002 00111000012011101110000000000001010000212001000002101010000000001000000020000 00111100012001101110000100000001010000211021000002101010000100000001000020102 00111100012011100110000100100001011000212021200002101010000010000000000000002 00111100012011100110000100000001010000212021000002101010000000000000101020000 00001000012001100100000100000001010000212021200002101011000100000000001000000 $0011000001201110010000100000001101000021201 ? ? 00 ? 02100010000000012000000001000$ $0011000001201110010000100000001101000021201 ? ? 00 ? 02100010000000011000000020000$ 11010000100002000000000000010100011110101100011110000001000000000001010021100 11010000100002900010000000010100011010101100011110000001010000000001010021100 00000011012000100100000100000011010000212000200002101000100000000101000120002 00000011012000100100000000000011010000212000200002101000100000000101001120000 10010000000001000000000010001101010011102000011010100001110000002001000101000 00000000000001000000000010001101001011000021011100100101100000002001000110010 $00110000000001000000000000011101010011000121000001100 ? 01000000000001001120010$ 00100000000001000000000000001001010011000121000001100001000000000001000120010 00000000000102000001000000000100011010000100201010000000101000012011000000002 10100000000102000001000000010100011010100100201010000000101001000011000000002 10000000000002000000000010010101000000102100001010100000000000010001000000000 10110000100101000101000011000101010011101120001002110010000100000002010010001 $101100001001010000100000100001110100101010200100021100110000000000000 ? ? ? ? ? ? 0 ?$ $1011000010110110001100001000101101100020201 ? ? 00 ? 021100110000010011010 ? ? 1 ? ? ? 01$ $0000 ? 00000000200000000001000020100001110112 ? 001110000100000000010011000000100$ 11100000001101101110000010000001011000102020211110000011000110000010010101101 10101000100102000010000010001201011011102000001110000000100110100121010111001 10000000000101000101000011001201011011102000011010000010100110100121010100201 11100000101100101110000010011011010001102021011110000010000000100011010101001 $1110000010110000111000001000101101000 ? 102020011010000010000000100011010101001$

Hlow, ci 26, ri 66. The consensus tree based on the 1712 trees is shown as Cladogram 3a.
F. A. Sikeira repeated our Analysis D and then re-examined the relationships using successive approximations character weighting (Firris, 1969). Statistics: L 635, T 8, ci 26, ri 66. The topology different from that of the first part of Analysis D is presented in Cladogram 3b.

Anabsis E was based on the matrix of characters of mature larvae (61 taxa, 77 characters). See Table 3 for the matrix and taxa and the List of Larval Characters for characters and states. Two islands of trees were found. For the larger island, the statistics are: L 482, T 176, ci 18 , ri 67. The consensus tree is shown as Cladogram 4 . The smaller island resulted in 16 trees, and otherwise the same statistics. As noted below, the trees of the smaller island were not useful and no cladogram representing them is presented.

In order to compare analyses based upon larval and adult features, we reduced matrices to inchude only taxa for which both character sets were available, as follows:

Analysis f was based on larval characters (47 taxa, 77 characters). Statistics: 1-411, T 12, ci 21, ri 63.

Analysis G was based on adult characters (47 tasa, 131 characters). Statistics: L 695, T 940, ci 27 , ri 62.

Analysis $/ /$ was based on a matrix (47 taxa, 208 characters) consisting of both larval and adult characters, i.e., matrices for Analyses F and C combined. The taxa are those in common at the genus level between Analyses A and E, except that larval Allodape and adult Brommsapis characters constitute one taxon for purposes of Anaksis II. Likewise adult Biastes and larval Nropasiteswere associated, as were adult Nomada (Pachynomada) and larval Nomada (Nomada s. str.) Statistics: L 1079, T 1, ci 24, ri 60. The single tree, in summary form, is shown as Cladogram 5 .

In Cladograms 1 and 2 certain nodes are numbered, 139 in Cladograms la and lb and $40-59$ in Cladograms 2a and $2 b$.

Analysis A: Of the trees derived from Analysis A, we present one (Cladogram la) in full detail becatuse it is based on all the taxa and all the characters. As will be shown below, other analyses protide better phylogenetic hypotheses.

A striking leature of Cladograms la and 1 b is the extensive resolution. The consensus tree (Clatogram lb) shows few polytomies; that is, most of the topological features of Clarlogram la are found in all the trees based on Analysis A. The polytomies in the consensus tree (which in all other respects, of course, is like Cladogram la in topology) are listed betow; the genera included in the family-group taxa are listed in the section on Classificatory Results.

1. Within the Melitudae (Node 2), four groups form a polytomy: Macropis, Dasypoda, Hesperapis, and a common stem for Melitta and Meganomict.
2. Within the Megachilinae (above Node 7), a polytomy supports four branches: Osmia, Hoplitis, the Megachilini and the Anthidiini.
3. Isomalopsis, Exomalopsis, and the stem leading to all taxa above (Node 31) form a trichotomy. (See reanalysis by Silveira, 1993.)
4. Immediately above this trichotomy there is another consisting of Ctoroplectra, the Emphorini, and the (Eucerini + Tarsalia) + the Tapinotaspini (Nodes 33, etc.).
5. Within the Emphorini (node above 34) there is a trichotomy consisting of Melitoma, Diadasia, and Diadasima + Pilothrix.
6. Within the Tapinotaspini (Node 37) there is a polytomy comsisting of Caenonomada, Monoeca, Paratptraperlia + the subgenus Arhysoceble, and Tapinotaspis + the subgenus Tapinortina.
7. Eucerinoda, the rest of the Encerini, and Tarsalia (Ancylini) form a trichotomy (Node 38).
8. Within the subtribe Eucerina (node above 39) there is a trichotomy consisting of Canephorula, Melissodes + SuasPra, and Eucara + Peponapis.
ltems 3 and 4 in the above list are the only ones involving stems learling to other major taxa.

There are few uniquely derived characters supporting the major (lower) nodes of Cladogram 1; a strong exception is Character 131 (number of ovarioles or testicular tubules) in Node 5 . It is not surprising that some of the nodes, especially those supported by few characters (e.g., 9, 17, 19. 27), are weak and for biological understanding should be collapsed on the basis of our study. Further study by Silveira (1993), however, supports some of these nodes.

The characters of Norle 1 (the common stem) inchucle two apomorphies of melittids and 1 -T bees together (27-1, 42-1). A discussion of these and other common characters of Melittidae and L-T bees was given by Wichener and Greenberg, 1980. Characters 68-3 (pre-episternal ridge) and 100-1 (submarginal cells) are reductions that are reversed at various points on the tree. We do not believe that they represent the true course of evolution because regaining of lost structures (e.g., a wing vein, character 100) is molikely. See subsequent analyses for discussion.

Characters of Node 3 include several features of the mouthparts ($34-1,35-1,41-1,45-1,48-1,51-1,52-1,53-2$ and 56-1) that are characteristic of $1-T$ bees and dilferentiate them from S-T bees. Although the node is strongly supported, for most of these characters there are scattered reversals, and all but 56 reverse at least once. Ctenoplectra is the only taxon that reverses several (seven of nine) of these characters, inchuding 48-1 which is the hallmark of $\mathrm{I}-\mathrm{T}$ bees. Characters 76 -1 (hind coxal atticulation) and 91-1 (shape of middle tibia of female) are also features of most 1 -T bees, with only one reversal (Tapimotaspis) for 76 and scattered reversals for 91. Chatacters 84-1 (basitibial plates) and 113-] (prepygidial fimbria) represent losses at Node 3 ; the structures reappear again elsewhere on the tree. Regaining of lost structures is not evolutionarily likely.

Node 5 is strongly supported by character 40-1, which is reversed only in Node 23. Character 122-1 is reversed only within Nomadinae and in Coelioxoides and Isepeohs. Character 13]-1, four ovarioles or testicular tubules instead of three as in Megachilidae and S-T bees, does not reverse although more than four (13]-9) occur in most Nomadinae, in Errcrocis and in Apis. Character $105-2$, a very shont jugal tobe,
is primarily a feature of parasitic bees. In the cladogram it is reversed in Nodes 19 and 21 . We do not believe this represents a likely evolutionary pattem, although we know nothing of the function of the jugal lobe or whe it should be small in parasitic bees. Character 126-2 (volsella) is a loss. The volsella reappears in Nocle 21, in the Osirini, in the Isepeolini, in Coelioxoides, and in some Nomadinae. Since reacquisition of a lost stucture is improbable, we question the probability of this reappearance.

Node 7 (Negachilinae) is supported by Chatacters 1-1 (subantemal sutures) and 31-1 (dististipital process), found only in this subfamily, although neither is conspicuous or miformly well developed. Character 7 -1 (long labrum) appears also in Neofidelia, Thyreus, and some Nomadinae, atthough in the Apidae with a long labrim, it does not have the broad basal articulation to the dypeus found in Megachilinae, and is cleaty independently evolved.

Node 8 (Nomadinae) is suppoted by Character 53-1. which represents reduction of the tlabellum as is frequent in parasitic (and some other) taxa. Character 111-1 (shape of S6 of female) is mique for the Nomadinac. Character 131-2 (more than four follicles) occurs in all Nomadinae for which the character is known except some species of Nomatla. The ctades wihhin the Nomadinae are considered in the discussion of Classificatory Results.

Node 9 is supported by Characters $23-2$ and $30-1$, which are reversed in scattered taxa. Charater 127-1 (spatha present) should probably be in Node 5 since most Nomadinae that do not have reduced genitalia have a spatha. The spatha is lost in scattered taxa above Node 9.

Node 17 is best supported by Character 68-1 (pre-episternal imenal ridge curing back to scrobe), but the ridge is reduced or lost in various taxa (mostly parasitic) and extends a short distance downward (68-0) in Isepeolus. This node is not strongly supported.

Most of the remaining numbered nodes, likewise, are supported principally by characters that are weak because of repeated reversals and appearance of the same states also elsewhere in the tree. The following are the node numbers, each followed by a dash and numbers of character states that are infrequently reversed or repeated elsewhere in the study and therefore appear to give the stronger support for each: $18-50-1,79-1 ; 19-89-1 ; 20-5+1,7+1 ; 21-$ 104-1:23-90-1, reversal 40-0: 24-101-1, reversals 80-0, 91$0 ; 26$-reversals 5-0, 75-0; 30-89-2; 31-62-1, 70-1, 79-1, 121-2. reversal 80-0; 33-58-1; 35-90-1; 36-63-1, reversal 6 -0; 37-32-1, 72-1. Particularly weak nodes are 17, 18, 19, 21, 27. 30,32 , and 35 .
The following are comments on strengths or weaknesses of the other mumbered nodes.

Node 22 is supported especially by Character 1062 (long. oblique vein (u-v of hind wing), which is found only here, although a less extreme version (106-1) occurs in some Anthophorini and in Rhathymus. Character $41-2$ also appears in Anthophorini. Character 101-1 also appears in Anthophorini and elsewhere. Character 102-1 also appears in Anthophora and Centris, as well as elsewhere. Chatacter 129-

2 occurs also in Epichans, some Osirini, and some Nomadinae. None of these characters seems related to the parastism of the Ericrocidini and Melectini.

Node 25 (the apine clade) is one of the best-supperted nodes in the study. Character 60-1 (expanded pollex) is unique except for the rery different sort of expansion in Megachilinae. Character 85-1 (tibial corbicula) occurs eheewhere only in Canefhorula. Other characters having to do with pollen manipulation and transport, Characters $86-1$, 87-1, and 88-1 are unique to this node except that 87-1 occurs also in Ctemopletra and $88-1$ is reversed in Meliponini. Character 74-2 occurs also in some Melectini and Ericrocidini. Character $78-1$, otherwise unknown in L-T bees, is reversed in Meliponini. Thus this node is supported not only by the well-known hind tibial characters but ako by other features. Character 105-3 (loss of the jugal lobe), however, is reversed to 105-0 in Apis and Meliponini. Reappearance of lost structures is improbable and this reversal is evolutionarily malikeh; independent losses in Euglossini and Bombus involve the same number of steps as one loss and one gain and would be more likely.

Node 27 seems supported by Character 29-1 (stipital comb). This character, however, appears atso at Node 23 and in most Osirini. Moreover, some Nomadinae have stipital concavities; they are probably derived from ancentors with the comb. Probably $99-1$ should be at Node 5 , as a character of Apidae, lost in numerous parasitic taxa. If this were done, Node 27 would have little support.

Node 28 has four resersals ($6-0,8-0,23-0$) , and $30-0$) of chanacters that appeared in Nodes 5 and 9. This supports the movement of the Xylocopinac toward the base of the tree as in Cladograns 2 2,3 , and 5 , eliminating the reversals. Character 120-2 is found elsewhere only in Apis, where it looks very different.

Node 29 is supported by Characters 3-2 (facial foreae) and 49-1 (incised base of labial palpus), which reverse to 3-1 and 49-0 in Node 33 and thus characterize the Exomalopsini. Moreover Character $75-1$ is a reversal from $75-2$, and goes back to $75-2$ in Node 33. For further consideration of the Exomalopsini, see Silveira (1993).

Node 32 is supported by Character 19-1 which, however, appears in many other parasitic groups, but not in pollencollecting bees. It is probably a convergent feature of paratsition rather than an indication of phyletic relationship. The other characters on this note are weak; the node itself should probably be eliminated in favor of a polyomy at Node 19.

Node 34 (Emphorini) is suppoted by Character 67-1, which is unique to the Emphorini. Character 11-1 (internal antennal sclerite) appears elsewhere in Coelioxoides and is only partly developed in Ancyloscelis.

Node 38 (Eucerini + Tarsolia) is supported by Character 12.-2, which appears also in Allodapini and Nomadinae but is so different as to be a good eucerine + ancyline character.

Node 39 (Eucerini) is supported by Chatacter 12-1, which is unique for this group.

Cladogram 1a. One minimum-length tree based on Analvsis A showing relationships based on adult characters among representative genera of long-tongued bees. The base of the cladogram is at the lower left of the first page. Characters are numbered according to the Annotated List of Arlult Characters. Character transformation is symbolized as follows: dots indicate changes that occur

once in the tree, bars indicate changes that also occur in parallel elsewhere in the tree, black crosses indicate reversals to a state already present basally in the tree, white crosses indicate re-teversals. Only nodes referred to in the text are numbered. Capital letters and arrows indicate continuation of the tree on another page. Capital letters and blach squares serve to match branches of the tree in the same page. Node 2 subtends the Melitidae; 4 , the Negachilidae; 8 , the Nomadinae; 25 , the apine clade; and 28 , the Xylocopinac.

Cladogram 1a, contimued.

Analysis B: As explained above, this analysis contributed nothing ol importance to our understanding of phylogeny since the trees produced were very similar to those of Analysis A. On the other hand, Analvsis B added to our confidence since we could examine all the shortest trees. The fact
that they were similar to the subset examined in Anatysis A provides important support for this analysis.

In Analysis B the number of submarginal cells (Character 100) does not reverse from two to three, as in Analysis A.

Cladogram lb. Summars of Cladogram la with characters omitted. Lengths of ventical lines are proportional to the numbers of characters.

Analysis C: (Note that node numbers 1-39 are for Analysis A, Cladograms la, 1b, white mumbers 40-60 are for Analysis C, Cladogram 2a, 2b.) Cladogram 2a, based on Analysis C (five characters associated with parasitism omitted). gives some striking rearrangements relative to Analysis A. There are no longer characters of parasites in the stem from which nonparasitic taxa seem to be derived. The Xy-
locopinae become the first branch of the Apidae, between Megachilidae and Nomadinac. In comection with this, Node 42 is supported by Characters 4 (1 - $, 68-1,122-1$, and 131-1. Character 126-2 (loss of volsella) is reversed higher in the cladogram, which is not evolutionarily likely. The support of the Xylocopinae lacks four reversals shown in Node 28 of Cladogram 1a; these characters appear in Nodes 43

Cladogram 2a. Basal parts (to families, subfamilies, and tribes) of tree based on adult characters, Analysis C (five characters related to parasitism omitted). The base of the cladogram is at the left.

Cladogram 2b. Summary of Cladogram 2a, as consensus tree. Lengths of vertical lines are proportional to the number of characters.
and 44. These nodes are supported by characters that were reasonably strong in Analysis A.

Node 45 is essentially like Nocle 18. Also the Tetrapedini is supported by largely the same characters in Analyses A and B but Nodes 46 and above are substantially rearranged. The Anthophorini and Centridini are dissociated, the latter becoming the sister group of the apine group of tribes. The consensus tree (Claclogram 2b) shows a polytomy of four branches: (a) Centridini + the apine clades, (b) Anthophonini. (c) Rhathrmini, and (d) Melectini + Ericrocidini.

Node 51 is supported only by Character [97-1 (spatha). As noted in Analysis A, this feature appears in branches throughout the Apidate and should probably be in Node 42. with losses in certain taxa. Thus 127-1 is probably plesiomorphic for Apidae: if so, Node 51 would collapse.

Node 52 is supported by Character 89 -1 which, however, appears also in Centridini and as $89-2$ in Anthophorini.

The Protepeolini (Leiopodus in Cladogram la, lb) and Isepcolini are united only by Character 64-1 (prosternal arms) A polytomy at 52 is a likely conservative interpretation.

The positions of Ememapis and Teratognatha are supported by Nodes 53 and 54 , which have almost the same sets of characters as 29 and 30 . Cladogram 1a. Node 55 is identical to 31. Isomalopsis and Exomalopsis are mited in some of the Analisis C trees as is shown in Cladogram la. See Silveira (1993) for reanalysis of the Exomalopsini.

The remainder of Cladogran 2 a is rather different from Cladogram la and the topology of different versions is diverse. The consensus tree shows a five-part polytomy as follows: (a) Ancylini (Tarsalia in Cladograms Ia and ib), (b) Ctenoplectrini, (c) Tapinotaspini, (d) Emphorini, and (e) Encerini. As in Cladograms la and lb, Canephonta is in the midst of Eucerini, not a basal branch. Of the three topologies for this part of the cladogram found in Analysis C, one is shown in Cladogram 2a and 2b; another is as in Cladograns la and lb. A third shows the following arrangement: ((()Ctenoplectrini, Tapinotaspini) Encerini) Emphorini) Ancylini).

Analysis D: For this analysis (parasitic taxa excluded), a summary based on the consensus tree is presented as Cladogram 3a. Compared to Cladograms 1 and 2, various similarities are apparent. The Megachilidae are monophytetic and almost identical. The Xylocopinae are positioned as in Cladograms 2 a and 96 and identical in branching pattern. (See the reanalysis of the Xylocopinae in the discussion of Classificator Results.) As in Analyses A, B and C. the Exomalopsini constitute a paraphyletic group with the taxa artanged in the same way. (See the reanalysis by Silveira, 1993.) This group is located, however, between the Xvlocopinae and all other Apinae, which are based on a large polytomy. In Analyses A, B and C there are two major branches separated at nodes 17 and 44 (see Cladograms I and 2). Such branches are not evident in Cladogram 3a, or in the individual trees mpon which the consensus tree was based. The eight branches of the large polytomy in the consensus tree are as follows: (a) Tetrapetia, (b) Tarsalia, (c) Eurerinoda, (d) Clenoplectra, (e) Tapinotaspini, (f) Emphorini, (g) Encerina, and (h) a branch including Anthophorini, Centridini, and the apine clacle. Thus a feature of Cladogram 3a is the association of the taxa listed under (h), as in Cladograms la and 1 b .

With successive approximations character weighting by F. Silveira, all eight trees were alike in topology except for differences within the Melittidae and in the relative positions of Isomalopsis, Exomalopsis, and the stem leading to most other Apinat. The consensus tree is therefore completely resolved for $\mathrm{L}-\mathrm{T}$ bees except for one polytomy: The topology for the Megachilidae, Xylocopinae, Eremapis, Teratogmatha, and the polytomy (Exomalopsis, Isomalopsis, other Apinae) is as in Cladogram 3a. The other Apinae are divided into two main branches, as in Cladograms la, lb. 2a, and 2b; malike those cladograms, however, the Encerini are in the same major branch as the apine clade and the Anthophorini, although near the base of this group and thus near the other branch. The topology for the Apinae above the polytomy is shown as light lines, Cladogram 3b.

Analysis E: Based on larvae, this analysis results in two is-
lands of trees; the major one (176 trees) is summarized by a consensus tree, Cladogram 4 . The minor island's consensus tree (based on 16 trees) is discussed below. In bees, larvate that spin cocoons are usually different in labial and other characters from larvae that have lost cocoon-spinning behavior. However, within L-T bees these differences do not appear to influence the tree greatly, for most L -T bees spin cocoons. Characters 43-9, 47-0, 49-1,50-9, and 51-1 tend to appear among non-cocoon-spinning taxa: such taxa among L-T bees are Thyreus, Epicharis, Anthophorini, Xylocopinae. and Nomadinae, as well as one group of Melittidae.

In the consensus tree for the major island of trees, the Nomadinae with Isepeolus form a clade. The Brachynomat dini is the basal nomadine group in the consensus oree, in the trees of the minor island, and in Rozen, Eickwort and Eickwort's (1978) cladogram based on larvae. Also Neolarrini and Biastini are sister groups in these three analyses as are Epeolus and Trippeolus. Otherwise the three clatograms are quite dissimilar. We do not wish to support the paraphyly of Ammobatini indicated in Cladogram tas well as in the analysis of the minor island of trees.

The rest of the taxa in the consensus tree for the major island arise from a large polytomy (6 branches) as shown in Claclogram 4. One member of this polstomy contains Rhathymus, the Ericrocidini, Melectini, Ctenoplectrini, Megachilidae and the tribes of the apine clade. Wibhin this large group, the most surprising subgroup consists of the apine complex and most Megachilidae, with the Megachilidae as a whole being a paraphsletic unit from which the apine complex arose. Since we did not directly examine the larvae, but merely used a table of characters, we only present this strange result, which disappears when laval and adult characters are used together (Analysis H. Cladogram 5).

The minor island of trees gives strange results that we fund not useful. The Nomadinat are the sister group of Dasypoda in the Melittidate. In the consensus tree there is a trichotomy consisting of Capicola. Hesperapis, and Dasypoda + Nomadinae. This trichotomy is the sister group of all the other bees in our study, which are divided into two groups. One consists of Exomalopsis, Paratetrapedia, the Eucerina, Emphorina (the last wo as sisters), the Anthophorini. Centridini. Leiopodus, the last as the sister to Xylocopinae. The other consists of the rest of the Melitidae. Asepeolus, the Melectini, Ericrocidini, Ctenoplectra and the Megachilidae plus the tribes of the apine clade, the last arranged as in Cladogram 4.

Analyses F and G: These analyses were designed to compare phylogenies based on larvae (F) and on adults (G). Aany of the groups were alike in the wo analyses, but the connections (i.e., the relationships of major groups) were often quite different. Comparing the consensus trees, the following taxa or groups appear in both:

1. Megachilidae. For achults the arrangement is similar to that of Analysis A. For larvae, Megachilidac are the sister group to the apine clade and most genera form a polytomy except that Neofidelia and Parafidelia form a sister group arising from the polytomy.

Cladogram 3: a. Consensus tree based on adult characters, Analysis D (all cleptoparasitic tava omitted). Lengths of vertical lines are proportional to numbers of characters. b. The same, large polviomy of $3 a$, resolved by use of successive approximations character weighting. (This is a consensus tree; polytomies occurred elsewhere.) The generic names are written out in full in Cladogram 3a.

2. Nomadinae.

3. Xylocopinae. For adults the Xylocopinac is part of the large polytomy including all L-T bees except Alegachilidae and Nomadinae. For larvae the Xylocopinae plus Leiopodus constitute the sister group to Exomatopsis + Emphorini + Eucerini.
4. Anthophorini-Centridini. For adults these tribes, as sisters, arise from the large polvtomy. For larvae these tribes constitute the sister group to Xitocopinae + Leiopodus $+E x-$
omatopsis + Emphorini + Eucerini, and the Anthophorini arise from a paraplyletic Centridini.
5. The apine clade. For adults this clade arises from the large polytomy, Bombus, Eufriesea, and the rest forming a trichotomy. For larvae, this clade is the sister group of Megachilidae; Bombus is the first branch, Eufriesea the next.
6. Emphorini. For adults, part of a polytomy including $E x$ omalopsis, Paratetrapedia, and Eucerini. For larvae, the sister group to Eucerini.

Cladogram 4. Consensus tree based on the larger island of minimum-length trees using lanal characters, Analsis E. Lengths of vertical lines are proportional to numbers of characters.
7. Eucerini. See comments on Emphorini.

For adults, the Apidae are the sister group to Megachilidae, the two families together constituting the L-T bees. For larvac, the megachilids are a subgroup within the other LT bees and sister group to the apine clade. But at the subfamily and tribal levels most genera fall within the same taxa (1-7 above) whether larvae or adult characters are used. The
exceptions are eight genera. Two that clearly constitute the Melectini (Zarosmia and Thyreus) in the adult cladogram are not widely separated in that for larvae. The other six seem to occupr quite unrelated positions when one compares the trees based on larvae and on adults. They are Ctemoplectra, Exomalopsis, Isepeolus, Leiopodus, Paratetrapedia and Rhathymus. Each of these lacks close relatives available as both larvae
and adults for our study; they are thus not closely related to other taxa in Analysis H .

From the above comments it is apparent that while the smaller groups (largely subfamilies and tribes, but inchuding Megachilidae) usually are found in both the larval and adult cladograms, the arrangement of these groups is in some cases very different. Thus while lanal characters usually support adult-based smaller groups, they do not abways support the larger groups based on adult characters.

Analysis H: This analysis was based on larvac and adults combined, using the united matrices for Analses F and G : it resulted in the single minimum-length tree shown in Cladogram 5 . In a few features it is similar to the cladogram based on larval characters (Cladogram 4), but in other respects it resembles those based on adults. The following are interesting features of Cladogram 5.

1. Melittidae. As in the larval analysis (Cladogran 4), the melittids are divided and paraphyletic.
2. Megachilidae. This family is not associated with Apini and its relatives, as in the larval analysis, but within the family the Fideliinae is paraphyletic, in contrast 10 Analyses AD and G, Cladograms I-3. Moreover, Hoplitis and Osmia are separated rather than being sister groups as in Analysis A (Cladograms la and lb).
3. Nomadinae. The included tribes are not arranged as in the other analyses. See the reanalysis under Classificatory Results.
4. Isepeohes and Leiopodus are separated, but as in Cladograms la, 1b, 2a, and 2b, appear near the base of the Apinae.
5. There are not two major branches such as separate at Nodes 17 and 44, Cladograms la, 1b, 2a, and 2b. The tribes of the apine complex are arranged as in Cladograms la and lb but are not closely associated with Anthophorini or Centridini.
6. As in Cladograms 3a and 3b, Centris and Epicharis form a paraphyletic group from which the Anthophorini arose, instead of being a sister group to Anthophorini as in Cladograms la, Ib, 2a, and 2b.
7. Exomalopsis and Paratetrapedia are sister groups, together the sister group to Emphorini + Eucerini, this whole complex being the sister group to Ctenoplectra.

Many of the deviations from Analyses A to C are a result of the limited number of taxa for which larval data are available. For example, Exomalopsis cannot appear near other genera of Exomalopsini because there are no latval data for the latter.

CIASSIFICATORYRESULTS

At least the classificatory levels, and often other features of classifications, are subjectively determined. No one of our trees can be used alone for developing a classification. Analysis A has the full complement of adult characters and available taxa but results in cladograms in which features of
parasitic bees evolve into those of nonparasitic bees, among other problems. Analysis C partly corrected this problem and is probably our best tree on which to base a classification. although it suffers from collapsing of certain nodes as explained for Analysis B in the preceding section. Analysis D. performed to further clarify the problems arising from parasitic bees, lacks all parasitic taxa. All other analyses lack many taxa because of the sparse information on larvae.

The following classification, therefore, is based on available information from the various analyses. Except for the Exomalopsini, all family-group taxa are found to be monophyletic in several or all of our analyses. The only commonly accepted family-group taxon of L-T bees not included in our study for lack of specimens to clismember, the Townsendieltini, is included on the basis of another study (Roig-Alsina. 1991). The genera included in the study, and occasionally others for clarification (the latter in parentheses) are listed.

Megachilidae
Fideliinae
Pararhophitini-Pararhophites
Fidelini-(Fïdelia), Nenfidelia, Parafidelia
Degachilinae
Lithurgini-Lithurge
Anthidiini-Anthidium, (Dioxys), Trachusa
Megachilini-Coelionys, Megachile
Osmini-Hoplitis, Osmia
Apidae
Xylocopinae
Nylocopini-Nylocopa
Manueliini-Manuelia
Ceratinini-Ceratima
Allodapini-(Allodape), Braunsapis, Macrogalea
Nomadinae
Ammobatini-Ammobates, Oreopasites,
Caenoprosopidini-Caenoprosopis
Neolarrini-Neolarra
Townsendiellini-(Townsendiella)
Nomadini-Nomada, subgenera Centrias and Pachynomada
Biastini-Biastes, (Neopasites)
Hexepeolini-Hexepeolus
Ammobatoidini-(Ammobatoides). Holcopasites
Brachynomadini-Brachynomada, Kelita, Melanomada
Epeolini-Epeohes, Rhogepeolus, Triepeolus
Apinae
Tetrapediini-Coeliovoides, Tetrapedia
Rhathymini-Rhathymus
Euglossini-Eufriesea, Euglossa
Bombini-Bombus
Apini-Apis
Meliponini-Melipona, Partamona, (Trigona)
Centridini-Centris, Equicharis
Anthophorini-Anthophora, Deltoptila, Habropoda
Ericrocidini-Enocrocis, Mesomychium, Mesophia
Melectini-(Melecta), Thyreus, Xeromelecta, Zacosmia

Cladogram 5. Minimum-length tree based on larval and adult characters, Analvis 11 . Lengths of vertical lines are proportional to numbers of characters.

Osirini-Erclitodes, (Epeoloides), Osims, Parpprohes
Protepeolini-Leiopodus
Isepeolini-Isepeohes, Melectoides
Exomalopsini-Eremapis, Exomalopsis, Isomalopsis, Teratognatha
Ancylini- (Ancyla), Tarsalia
Eucerini

Eucerinodina-Eucerinoda
Eucerina-Canephorula, Eucera, Melissodes, Peponapis
Emphorini
Ancyloscelina-Ancloscelis
Emphorina-Diadasia, Diadasina, Melitoma, Ptilothrix
Ctenoplectrini-Ctenoplectra

Tapinotaspini-Caenomomada, Monoeca, Paratetrapedia and subgenus Arhysoceble. Tapinotaspis and subgenus Tapinorhina

Our clatograms should not be used to develop a classification of Melittidae. We included melittid genera for our analyes as an outgroup. To develop a classification of that family, more genera, probably other characters, and outgroups among the S-T bees should be used. Lanae suggest that the family Melittidae is not monophyletic and Nichener (1981) found no srnapomorphies for the family. We, however, found the small intercalary sclerite between the cardo and stipes (Character 26-1) which appears to be a famity level synapomorphy. The sclerite, however, is sometimes exceedingly small and inconspicuous.

The Fidelinae, with its subdivision into tribes Pararhophitini and Fideliini, appears in all wees based on Analyses A to D. This arrangement, although not previously formalized, is similar to that which Rozen (in McGmley and Rozen, 1987) envisioned. The Fideliinae is strongly supponted by Characters $83-1,92-1,114-1$ and 117-1, the first and last of which are unique to this subfamily. Another unique character of the subfamily is the cocoon mixed with sand previoush ingested by the larva (IlcGinley and Rozen, 1987).

The position of Lilhurge as the sister group of the rest of the Megachilinae appears in all trees based on Analyses A, D and H . Synapomorphies of the tribe Lithurgini are listed by Michener (1983). If one wishes to use the category subtribe, then the Lithurgini and Megachilini could be the two tribes of Megachilinae, the Negachilini being divided into the subtribes Anthidina, Megachilina, and Osmiina, although in the consensus tree of Analysis A Osmia and Hoplitis arise separately from the same polytomy as the other two tribes. We prefer the classification shown above because there is no objective basis for changing the established recognition of Anthidiini, Megachilini and Osmiini as tribes.

The subfamily Xylocopinae appears as a recognizable group in all trees. Its position at the base of the Apidae is shown in Analyses C and D (Cladograms 2 and 3) and it is near the base (above Nomadinae) in Analvsis H (Cladogran 5). The sister group relationship of Nilocopinae to the apine clade indicated by Sakagamị and Nichener (1987) is seemingly incorrect. As indicated at that time, it was based largely on the similar structure of $S 8$ of the male, which is now recognized as a plesiomorphy. There are, however, behavioral characters such as food storage outside the larval cells that support the supposed relationship of Nylocopinae with the apine clade. We now believe these behavioral similarities to be convergent.

Within the Xylocopinae, our analyses show Nylocopa to be the first branch, while Sakagami and Nichener (1987) found Manuelia to be in that position, i.e., their tree differed from ours in that Mamuplin and Xylocopa exchanged positions. We therefore reanalyzed the Xylocopinae, using the 4] characters of the present study that vary among our exemplars of the subfamily, repolarized as necessary according to the condition found in Node 42, and seven additional characters used
by Sakagami and Michener (1987, characters 6, 16, 21-23, 26, 27). The ontgroup used was all plesiomorphies (all 0's). The result was two equally parsimonious trees (statistics: L 64, T 2, ci 82, ri 71). The difference between the two trees is in the positions of Xylocopa and Mamelia, one having the topology of Sakagami and Michener (1987), the other that of the present study. If one must choose, CDDI favors Mamuelia as sister group to the others because of the strong synaponorphy of $S 8$ of the male for the other tribes, comntered by a plesiomorphic 58 in Mamutia (Sakagami and Michener, 1987). (1t should be noted that Figure 10 of Sakagami and Nichener [1987] is inserted; the trmated spiculum is directed upward on the page.)

The relationships within the subfamily Nomadinae as shown in Analysis A (Cladograms 1, la) differ in several respects from those based on larvae and those given by RoigAlsina (1991). A remalysis was made of Nomadinae alone, using 36 adult characters from the present study repolarized as necessary according to the condition found in Node 43 , and adding nine other characters used by Roig-Alsina (1991. characters 4-8, 10-13) but omitted from our study of L-T bees. Biastes was coded as plesiomorphic for RoigAlsina's character 12 (degree of fusion of furcula) because of the plesiomorphy seen in its near relative, Rhopalolemma. A single shortest tree (L. 114, T 1, ci 46, ri 56) was found. It is like that of Roig-Alsina (1991) in topology except that the positions of Hexepeolus and Nomada are reversed. This reanalyzed tree of Nomadinae is presumably more reliable than that shown in our cladograms.

Our trees and Roig-Alsina's based on adults show Oreopasiles and Caenoprosopis as the sister group to the rest. We considered using this division to recognize two tribes, each with subtribes. The larvae do not at all support such tribes (see Analysis F and Rozen, Eickwort and Eickwort, 1978) and in the study by Roig-Alsina (1991) Townsendiella could be equally parsimonionsly placed in either tribe. Furthermore, the detailed analysis by Alexander (1990) does not demonstrate the two major groups within the Nomadinae that we found. We therefore retain the numerous tribes of previous works, and for consistency add two new ones, the Hexepeolini (new family-group name for Hexppeolus) and the Brachyomadini (new family-group name for Brachynomada, Kelita, Melanomada, Peranomada, and Triopasites). The Brachynomadini is the melanomadine complex of Alexander (1990).

The reason for the great difference between our results and Alexander's may include the following: He included taxa that we do not believe are Nomadinae; if we are correct his group was not monophyletic. Moveover, on the basis of information then available, he considered the Exomalopsini to be the outgroup; his polarization of some characters would therefore have differed from ours.

The Tetrapediini includes both Tetrapedia and the parasitic genus Coelioxoides in Analyses A and C (Cladograms la, 1b). Thus the placement of Coelioxoides by Roig-Alsina (1990) is supported. The two genera are so different (Coelioxnides being parasitic), however, that thev might well be placed in
separate subtribes. Since each would include only one genus, such subtribes would serve little purpose.

In Analyses A and G the Anthophorini and Centridini are sister groups whereas in Analysis C they are widely separated. and in D to F and H Centridini appear as paraphyletic with Anthophorini as the sister group either to Epicharis (Analyses E, F, H) or to Centris (Analysis D). We prefer to regard the Anthophorini and Centridini as separate, probably monophyletic tribes (see, however, the cladograms of Silveira, 1993). The association of the three genera of Anthophorini in our study is consistent and we do not believe that the tribal name Habropodini used by Brooks (1988) is necessary.

The tribes of the apine clade are Euglossini, Bombini, Apini and Meliponini. One of us (AR-A) would prefer to regard these as subtribes of a tribe Apini, to show their relationship to one another. The other (CDNI) argues that the great differences among the four taxa justify recognition of each at the tribal level.

The many common characters of the apine clade (Nodes $25,60)$ have been used in the past to justily family status. Michener (1944), however, united the Apidae and Anthophoridae under the former name; we support this conclusion, although Dlichener (1965) later recognized the families as separate. Those who would recognize a paraphyletic Anthophoridae from which Apidae arose must demonstrate a major gap in morphology between the two. In view of the strength of Nodes 25 and 60, this is surprisingly hard to do when both sexes, both female castes, and all included taxa are considered.

The arrangement of the four tribes of the apine clade is the same for Analyses A, C, D, and H (Cladograms 1, 2, 3, and 5). This is one of Michener's (1990c) two preferred arrangements; the other was a dichotomous arrangement (Aichener's Figure I) which is not supported by our study. Our arrangement is also the same as that proposed by Prentice (1991).

There is no morphological support for the sister group relationship of Bombini and Neliponini proposed by Cameron (1991) on the basis of mitochondrial DNA sequences and by Sheppard and McPherson (1991) on the basis of ribosomal DNA sequences.

The Ericrocidini and Melectimi appear as sister groups in Analyses A and C (Cladograms 1 and 2). Since the common characters that indicate their relationship (see discussion of Node 22 above) are not obviously convergent features related to parasitic habits, these two tribes may be derived from a common parasitic ancestor.

The position of Osirini, Protepeolini, and Isepeolini well separated from the Nomadinae support the recent and sometimes tentative remoral of these groups from Nomadinae or placement of them as basal branches in analyses of parasitic, Nomado-like bees (see Alexander, 1990; Roig-Alsina, I991; and Rozen, Eickwort and Eickwort, 1978).

The Protepeolini (Leiopodus) appear in different positions in different trees. The association with Isepeolini in Cladograms 1 and 2 is weak. The larval characters indicate
wide separation of the two tribes (Cladogram 4) and this is maintained in Cladogram 5. The modification of the metasomal apex associated with egg laving by parasites is so different as to suggest separate origins for the two tribes from nonparasitic ancestors. In any event, it seems best to separate Protepeolini and Isepeolini at the tribal level since the evidence for a sister group relationship is weak.

Protepeolus Linsley and Nichener is a junior synonym of Leiopodus Smith (Roig-Alsina, new symonymy) but the tribal name is still Protepeolini.

The Exomalopsini in all cladograms based on adults appears to be a paraphyletic unit. In Analyses A and C this tribe seems far from the lase of the Apinae. However, when one considers the small number and weakness of characters of Nodes 9, 17, 19, and 27 or 43, 44, 51, and 52, the Exomalopsini are seen to fall rather near the base of the Apinae. In Analysis D (Cladogram 3) they form the base of the large sister group to the Xylocopinae and thus constitue the base of the Apinae, a position not inconsistent with the larval information (Analysis E, Cladogran 4); larvae have not been described except for Exomalopsis. In Analysis H (Cladogram 5), however, Exomalopsis appears with Paratetrapedia in the Tapinotaspini as the sister group to Emphorini and Eucerini.

As noted above in the discussion of Analysis A, Node 29 is supported by three characters that appear in that node, characterize the Exomalopsini, and reverse in Node 33. Further analysis will probably reveal more characters with this distribution and show that the Exomalopsini is monophyletic. We recognize it as a tribe even if it is paraphyletic. Reanalysis by Silveira (1993) has provided better but not decisive evidence that it is monophyletic.

Taxa sometimes included in the Exomalopsini that are here shown to be distinct and not necessarily closely related to it are the Ancylini, the Tapinotaspini, and the genus Ancyloscelis in the Emphorini.

The Ancylini (Angla and Tarsalia, only the latter included in our study) appears in Cladograms la and Ib as the sister group to the Eucerini; in the consensus tree for Analysis A. it is in a polytomy with Eucerinoda and the other Eucerini. In Aualysis C the consensus tree shows it in a polytomy with four other taxa, one of which is the Eucerini. In Analysis D the consensus tree places Tarsalia, Eucerinoda, other Eucerini, and five other taxa in a polytomy. Our impression was that Ancylini represents a basal branch of the encerine clade but since the evidence was not clear, we maintained Ancylini as a tribe. Silveira (1993), howerer, has reexamined the data, added Ancyla to his analvsis, and concluded that a sis-ter-group relationship to the Eucerini is not likely.

The Eucerini appear consistently as a clade including as its basal branch the Chilean genus Eucerinoda. Larvae of the latter are unknown but laval characters group other Eucerini (Cladogram 4). Eucerinoda lacks various features of the previously recognized Eucerini including the long paraglossae, hitherto considered a unique feature of the tribe. We therefore recognize two subtribes, Eucerinodina and Euccrina, relegating the former Eucerinodini to subtribal status.

Canephomula falls easily within the Eucerima and therefore the tribe Canephorulini vanishes.

The genera of Emphorini are consistently grouped, with Ancyloscolis as sister to the others. Placement of Anrloscelis in the Emphorini was suggested earlier by J. S. Noure (in litt.). It is different enough from other Emphorini that we propose subtribal status for it, the Ancyloscelina new subtribe, as distinguished from Emphorina.

The Ctenoplectrini, the remarkable features of which led to its recognition as a distinct family (e.g., Nichener and Greenberg, 1980), is a tribe of Apinat. The characters that led Xichener and Greenberg to place the Ctenoplectridae as the sister group to all L-T bees are now recognized as reversals in the mouthparts toward S-T bee characteristics (see Introduction: also Silveira, in press).

The Tapinotaspini is a new family-group name for a distinctive group of genera formerly included in Exomalopsini. These genera are those of sections I, 2, and 5 of Exomalopsini as understood by Nichener and Moure (1957); in that work the relationship of these three sections was recognized. The proposed relationships of Caenonomada to Centridini, Rhathymini and Ericrocidini (Snelling and Brooks, 1985) and of Monofca to Centridini (Neff and Simpson, I981) are not supported.

CONCLUDING REMARKS

Our work was based on exemplars of a limited list of genera. Familiarity with other species and other genera suggests to us that most of the character states that we recorcled apply also to the relatises of each exemplar. But we know of cases in which this is not true for certain characters, and there are doubtless many more such cases. Each group needs to be more broadly examined to clarify such matters. Moreover, each group needs to be reanalyzed not only to include genera and species that we did not study in detail, but to re-evaluate the characters that we did use.

Among the difficulties in a study of a large group such as the $\mathrm{L}-\mathrm{T}$ bees are selection of symapomorphic characters and coding of their states. One would bias the results wnduly toward the prior classification by using only those characters already known to distinguish recognized taxa; in L-T bees another problem resulting from such a policy would be too few characters for a reasonable analysis. We therefore used as many polarizable characters as we could find that were not autapomorphic at the level of our exemplars. Many of these characters had low consistency indices, reversing and rereversing, or a given state appearing to have evolved repeatedly among diverse taxa. These characters, however, may be phylogenetically important within smaller groups, such as a tribe. Homologies can be more certainly appraised within such a group. For such a study the polarity of some characters may be altered relative to our study; our polarization was for L-T bees as a whole but for analysis of a smaller group such as a tribe, polarity should be determined on the basis of outgroups for that tribe. We hope
our results will help in selecting such outgroups. Users of our work for this purpose should note, however, that certain nodes (we list the worst above) are weak: outgroups should be selected as though these nodes were polytomies even though they may be supported in consensus trees. When levels of homoplasy are high, as theywere in this study, minimum-length trees based on parsimony may be extremely unstable in the face of additional characters or taxa, so that weak nodes should never be taken too seriously. As indicated in the section on Classificatory Results, we here report reanalyses, with additional characters and repolarizations as necessary, for the tribes of Xylocopinae and Nomadinae. Moreover Silveira (1993) has made such a reanalysis of the Apinae.

Some preliminary biogcographical comments based on the distributions of the 41 terminal suprageneric taxa of L T bees are now possible. The numbers of such taxa in major biogeographical regions are as follows: neotropical 29 , nearctic 25, palearctic 20, subsaharan Africa 17, oriental I6 and Australia including New Gumea I1. In general these numbers are correlated with the climatic and ecological diversity of the areas. The neotropical region has the greatest number of taxa. Its great importance for bee taxa is further shown by the fact that it is the area of maximum disersity for several widespread taxa: Lithurgini, Epeolini, and Meliponini. The neotropical region also has the greatest climatic diversity-tropical forest, savanna, southern temperate areas, mountains, deserts, etc. North America has great diversity but the North American tropics are placed in the neotropical region: if one exclucles basically neotropical taxa that range into the southern nearctic, there are only 20 nearctic taxa.

Of greater interest are the possible contributions of clistributional patterns to our knowledge of antiquity of taxa. Fourteen of the taxa are restricted to the neotropical region or are basically neotropical but extend north only into the southwestem nearctic region. Absence of these taxa from Africa suggests that they are probably of more recent origin than the full separation of South Anerica and Africa; it was probably Eocene or later before the Atantic was wide enough to form a long-term barrier for flying insects like bees.

Two pairs of tribes, each of which may owe its duality to the long isolation of South America after its separation from Africa, are the Anthophorini-Centriclini and the Melec-tini-Ericrocidini. (The sister-group relationship of Anthophorini and Centridini is by no means certain.) In each case the first listed tribe is widely dismibuted but scarce or (for Melectini) absent in South America, while the second is principally South American, although ranging north in reduced diversity into the southwestern United States. These tribes are therefore likely to be younger than the separation of Africa and South America. These pairs are not independent; the Melectini are cleptoparasites of Anthophorini, the Ericrocidini, of Centridini.

The Ficleliini, a relict group now found in desertic areas of southern Africa, with one species of Fidelia in Morocco and the genus Neofidelia in central Chile, may once have been
widespread, or an old, limited distribution may have been divicied by the spreading Atlantic Ocean.

The pantropical Meliponini, which occurred as far north as the Battic region in tate Eocene times and as New Jersey in late Cretaceous, probably owes its wide distribution to its antiquity: Nonetheless, no genera are the same on both sides of the Atlantic Ocean (Michener, 1990c) although Trigona occurs both in the neotropics and in the Indoaustralian region; the genera are probably more recent than the Athantic.

For the majority of bee famify-group taxa, fossif evidence is totatly lacking. Fossils of Meliponini are mentioned above: for comments on the reliability of the late Cretaceous date for Trigona, see Rasnitstn and Michener (1991). Otherwise, among L-T bees, the apine clade has well-preserved and identifiable fossit species as old as the Eocene (Zemer and Manning, 1976); forms assigned to the Ctenoplectrini may be misplaced.

There is not even a lendency for old taxa (as judged by the fossil record) to be near the bases of the cladograms. Of course the fossil record is extremely fragmentary and biased toward taxa that collect resin for nesting purposes and thus occasionally are trapped in it and fossilized in amber: The fragmentary record that we have, however, and the fact that bee evolution may not have begom mintil the rise of the angiosperms in the earty Cretaceous, suggest that there may have been a rapid early radiation, followed by relative stasis in some clades. Families well represented in Australia are S-T bees (Colletidae. Stenotritidat, and Halictidae) and the Colletinae show congeneric relationships to South American forms. Therefore the major radiation of S-T bees, at least the Colletinae, presumably preceded the interruption of the Australian-South American biotic exchange through Antarctica.

There are no family-group taxa of $1,-\mathrm{T}$ bees limited to or highly diversified in Australia. Therefore L-T bees there are relatively recent arrivals, and L-T bees as a group must be more recent, at least in the southern hemisphere, than the time when Austratia became isolated from other land masses. Thus the major early radiation of 1 -T bees either postdated that time or possibly was in other parts of the world.

Appendix: NUHBER OF TLBLYES IN REPRODLCTIE ORGANS

The number of orarioles per ovary and ol sperm ubules per testis (Character 131) is one of the strongest characters for separating families of L-T bees. Of course dissections have non been made for all genera; exceptions may yet be formo. Based on the literature and our own dissections, the numbers ate the same for maries and testes, and are three for S-T beenand megachitids, four for Apidae except that in Apir and some parasitic groups (Nomadinae, Ericrocis) there are even more. This statement is based in part on the literature (Alexander and Rozen, 1987; Iwata, 1955: Iwata and Sakagami, 1966; Rozen, 1986; Reren and Roig-Alsina, 1991 and numerous works on halictid and allodapine bee lile histories and sucial biology, in which ovarian development has been routinels examined, and momber of onatoles incidentally reported or illustrated; see citations in Michener, 1974, 1990a, b). In addition the results of new clissections are listed below:

Femates, number of ovarioles per ovary: Manuela gayatina (Spinola) 4: Amyloscelis apiformis (Fabricius), 4.

Nales, number of tubulen per testis: Hespropin carimata Stevens, 3; Anthidium porterap Cuckerell, 3, Megadile mendica Cresson, 3; Megrachile petulans Cresson. 3: Xilocopa virginica (1 innaeus), 4; Ceratina calcarata Robertson, 4: Thepeolus distmatus Cresson. 5; Bombus purnsyluanicus (DeGeer), 4; Bombur bimachlatus Cresson, 4; Euglasa tividissima Friese, 4; Exomalopsis pagmata (Cresson), 4; I'aratetrapedia sp., 4: I'tilollinx bombiformis (Cresson), 1; Diadasia baent (Vachal), 4; Melissodes agilis Ciesson, 4: Seastra obliqua (Say). 4: Peponap is pruinosa (Sav), 4, Anthophora walshï Cresson, 4: Habropoda pallida (Timberlake), 4; Comtris alripes Nocsáry, 4.

IITERATURE CITED

Alexander, B. 1990. A cladistic analysis of the nomadine bees. Systematic Entomology 15: 121-152.
Alewander, B., and J. G. Rozen, Jr. 1987. Otaries, ovarioles and oncutes in parasitic bees. Pan-Pacific Entomologist 63: 155-164.
Ashmead. W. H. 1899. Chatsification of the bees, or the superfamils Apoidea. Transactions of the American Entomological Socien 26: 19-100.
Bönce, C. 1919. Stanmesgeschichte der Hambügler. Biologisches Zentratblat 39: 145-186.
Brooks. R. W. 1988. Swatematics and phytugeny of the anthophorine bees. Universitv of Kimsas Science Bulletin 53: 436-575.
Brobhers, D. J. 1975. Pbologeny and classification of the aculeate Hymenoptera, with special reference to Mutillidac. University of Kinsas Science Bullerin 50: 48:3-649.
Cameron, S. 1991. A new tribal phylogen of the Apidae infened from mitochondrial DN. 1 sequences. Pp. $71-87$ in D. R. Smith (ed.). Disersity in the Genus Apis. Boulder. Colomado: Westview Press
Cane, J. Fl. 1979. The hind tibiotarsal and tibial spur articulations in bees. Jounat of the Kansa Entomolegical Suciety 52: 123-137
Cresson, E. T. 1887 . Sunopsis of the families and gencra of the H_{ζ} menoptera of America, north of Aexico. Transactions of the American Entomological Societr, Suppl. Vol.: i-is + 1-154.
Ehrenfeld. J., and J. G. Rozen, Jr. 197\%. The cuchoo bee genus KPhla, its systematios biologr, and larvae. American Museum Noritates no. $2631:$ I-2 4.
Firris, J. S. 1969. A successive approximations approach to character weighting. Svstematic Zoologg 18: 374-385.
Farris, J. S. 1988 . Itenaigsic: Version 1.5. Port Jeflerson Station, N. Y.: distributed by the anthor.
lwata, K. 1955. The comparative anatom of the wary in flymonoptera. Part 1. Aculcata. Mushi 29: 17-94
lwata, K., and S. F. Sakagami. 1966. Gigantism and dwartism in bee eggs in relation to the modes of life, with notes on the number of ovarioles. Japanese Journal of Ecology J6: +16 .
Jander, R. 1976. Grooming and pollen manipulation in bees (Apoidea): The nature and evolution of movements involing the foreleg. Plusiological Entomology 1: 179-194.
Kirbw, W. 1802 . Monographia Apum Angliae. Vol. 1, xxii +258 pp.: vol. 2, $338 \mathrm{pp} .+18 \mathrm{pls}$. 1 pswich.
Laroca, S., C. D. Nichener and R. M. Hommeister. 1989. Iong mouthparts among "short-tongued" bees and the fine structure of the labium in Siltoma. Journal of the Kimsas Entomologicat Society 62: $400-110$.
Latreille, P. A. 18092. Histoire Naturelle des Foumms. $\mathbf{x i}+445 \mathrm{Pp}$, 12 pls. Paris.
Lepetetier de Saint-Firgean, A. 1836, 1841. Histoire Naturelle des Insectes-Hyménoptères. Vol. I, 547 pp.; wh. 2, 680 pp . Paris.
Haddison, D. R. 1991. The discotery and importance of multiple islands of most-parsimonious trees. Systematic Zoology 40:315328.

McGintey. R. J. 1981. Sistematics of the Colletidae based on mat ture lanae with phenetic anabsis of apoid lanae. L'nisersity of California Publications in Entomology 91: i-xwi $+1-307$.

McGinlev, R. J., and J. G. Rozen, Jr. 1987. Nesting biologs, immature states, and phylogenctic placement of the pateardic bee Pararhophites. Anerican Musema Novitates no. 2903: 1-21
Nichener, C. D. 1944. Comparative external morphology, phylogeny, and a classification of the bees. Bulletin of the American Muscum ol Natual History 82: 151-326.
Nichener, C. D. 1953. Comparative morphological and systematic studies of bee larvae with a key to the families of hymenopterous havae. University of Kansus Science Bulletin 35: 987-1102.
Michener, C. D. 1965. A classification of the bees of the Australian and South Pacifie regions. Bultetin of the American Museum of Natural I listory 130: 1-362, pls. 1-15.
Wichener, C. D. 1970. Social parasites among African allodapine becs. Zoological Jommal of the I innean Society [london] 49: 199-215.
Michener, C. D. 1974. The Social Behavior of the Bees: A Comparative Study. i-xii + 1-404 pp. Cambridge, Massarhusetts: Harvard University Press.
Michener, C. 1). 1975. A taxonomic stadv of African allodapine becs. Bulletin of the American Museum of Natural Historv 155 : $67-940$.
Michener. C. D. 1979. Biogeography of the bees. Annals of the Nissomri Botanical Garden 66: 277-347.
Michener, C. D. 1981. Classification of the bee fomily Melittidae with a review of species of Meganominae. Contributions of the American Entomological Institute 18(3): i-iii + 1-135.
Michener, C. D. 1983. The classification of the lithurginae. PanPacific Entomologist 59: 176-187.
Michener, C. D. 1985. A comparative study of the mentum and lorum of bees. Joumal of the Kansas Entomological Society 57 (for 1984): 705-714.
Wichener, C. D. 1990a. Reproduction and caste in social hatictine bees. Pp. 77-121 im W'. Engels (ed.), Social Insect.-An Evolutionarv Approach to Castes and Reproduction. Betlin: SpringerVerlag.
Michener, C. D. 1990b. Castes in aylocopine bees. Pp. 123-146 in W. Engels (ed.), Social lusects-An Evolutionary Approach to Castes and Reproduction. Berlin: Springer-V'erlag.
Nichener, C. D. 1990c. Classification ol the Apidac. L'niversits of Kansas Science Bulletin 54: 75-164.
Michener, C. D., and R. W'. Brooks. 1984. Comparative study of the glossac of bees. Contributions of the Anerican Entomological Institute 29(1): i-iii + 1-73.
Michener, C. D., and A. Fraser. 1978. A comparative anatomical study of mandibulat utructure in bees. Unisersity of Kansas Science Bulletin 51: 463-482.
Michener, C. 1)., and L. Greenberg. 1980. Ctenoplectridae and the origin of long-tongued bees. Zoolugical Journal of the 1 innean Society [London] (69: 189-2013.
Michener, C. D., and J. S. Noure. 1957. A study of the classilication of the more primitive non-parasitic anthophorine bees. Bulletin of the American Nhseum of Natural History 112: 395- $\mathbf{4} 51$
Neff, J. L.., and B. B. Simpson. 1981. Oil-collecting structures in the Anthophoridae (Hymenoptera): Morphology, function, and use in systematics. Jounal of the Kansas Entomological Society 54: 95-123.
Plant, J., and H. F. Pauhus. 1987. Comparative morphoiogy of the postmentum of bees (Hymenoptera: Apoidea) with special remarks on the evolution of the lorm. Zeitschrift fur Zoologische Sistematik und Exolutionsforschung 25: 81-103.
Popor, \'. V. 1949. Tribe Pararhophitini (Ilymenoptera, Anthophorinae) as an carl Tertiary element of the contemporary fauna of the desert in Central Asia and Egypt. Doklady Akademii Nauk SSSR 66: 507-510 [in Russian].
Prentice, M. 1991. Norphological analys.s of the tribes of Apidae. Pp. 51-69 in D. R. Smith (ed.), Diversity in the Genus Apis. Boulder, Colorado: Westriew Press.
Rasnitzyn, A. P., and C. D. Nichener. 1991. Niocene fossil bumble bee from the Sorict far east with comments on the chronol-
og and distribution of fossil bees. Annals of the Entomological Societt of America 84: 583-589.
Robertson, C. 1904. Synopsis of Anthophila. Canadian Entomorgist 36: 37-43.
Roig-Alsina, A. 1989. The tribe Osirini, its scope, classification, and revisions of the genera Pampeolus and Ommus. Universits of Kansas Science Bulletin 54: 1-23.
Roig-Alsina, A. 1990. Cophowoides Cresson, a parasitic genus ol Tetrapediini. Journal of the Kansas Entomological Society 63 : 279-287.
Roig-Alsina, A. 1991. Cladistic analyes of the Nomadinae s. str. with description of a new gemus. Journal of the Kansas Entomological Society 64: 23-37.
Rozen, J. G.., Jr. 1977. The ethology and systematic relationships of fidelime bees, including a description of the mature larva of Parafidelia. American Muscum Noritates no. 2637: 1-15.
Rozen. J. R., Jr. 1986. Sunev of the number of owarioles in various taxa of bees. Proceedings of the Entomological Society of Washington 88: 707-710.
Rozen, J. R., Jr. 1987. Nesting biology of the bee Ashmeadiella holm and its cleptoparasite, a new species of Sithis. American Museum Nowitates no. 2900: 1-10
Rozen.J. G., Jr. 1991. Biology and lanae of the cleptoparasitic bee Toumsendella puldura and nesting biology of its host. Hesperapis Ianoap. American Museum Nositates no. 3005: 1-11.
Rozen. J. G.., Jr., K. R. Eickwort and G. C. Eichwort. 1978. The bionomics and immature stages of the cleptoparasitic bee genns Protepeolus. American Muscum Novitates no. 2640: 1-24.
Rozen, J. G... Jr., and C. D. Michener. 1988. Nests and immature stages of the bee Paratetrapedia ヶuminsonae. American Museum Novitates no. 2909: 1-13.
Rozen. J. G., Jr., and A. Roig-Alsina. 1991. Biology, lanat, and oocrtes of the parasitic bee tribe Caenoprosopidini. American Museum Novitates no. 3004: 1-10.
Sakagami, S. F., and C. D. Nichener. 1987. Tribes of Xvlocopinae and origin of Apidae. Annals of the Entomological Societr ol America 80: 439-450.
Schenck, A. 1859. Beschreibung Nassauischer Bienenarten. Jahrbucher des V'ereins lüu Naturkunde im Heraogthum Nassau 14: 1-414.
Schench, A. 1869. Beschreibung Nassamischen Bienen, Zweiter Nachtrag. Jahrbucher Nassau des Vereins für Naturkunde 21 22: 260-382.
Schmiedehnecht. O. 1882. Apidac Europacace. Vol. 1, xiii +383 pp. Berlin.
Schonizer, K. 1986. Comparative morphology of the antenna cleaner in bees. Zeitschrift für Zoologise he Sistematik und EnoIutionsforschung 24: 35-5l.
Schönitzer, K., and N. Renner. 1980. Norphologic der Antennenputzapparate bei Apoidea. Apidologie 11: 113-130.
Sheppard. W. S. and B. A. NcPherson. 1991. Ribosomal DNA diversity in Apidae. I'p. 87-102 in D. R. Smith (ed.), Diversitv in the Genus Apis. Boulder, Colorado: Wesmiew Prens.
Sikeira, F. A. 1993. Phylogenetic relatonships of Exomalopsini and Ancylini. University of Kansas Science Bulletin 55: 163-1 73.
Silveira, F. A. In press. The mouthparts of Ancla and the recluction of the labiomaxillary complex among long-tongued bees. Entomologica Scandinavica.
Smith, F. 1853. Catalogue of Homenopterous Insects in the Collection of the British Musemm, Part 1, [i] + $1+197$ pp., 6 pls. London.
Snelling. R. R., and R. W. Brooks. 1985. A review of the genera of cleptoparasitic bees of the tribe Ericrocini. Contributions in Science, Natural History Muscum of Lor Angeles County; no. 369: 1-34.
Snodgrass, R. E. 1956. Anatomy of the Honey Bee. Ithaca, New York: Comell University l'ress. i-xis $+1-334 \mathrm{pp}$.
Sǔstera, O. 1958. Öbersicht des Systems der paläarhtischen und mitteleuropaischen Cattungen der Superfamilie Apoidea. Acta Entomologica Musci Nationalis Prague 32: 143-463.

Swofford, D. L. 1990. Phenetic Analysis L'sing Parsimony, Version 3.0g. Champaign, Illinois: Illinois Natural Historr Survev.

Thalci, B. 1972, 1974. Arguments contre l'interprétation traditionnelle de la phylogénie des abeilles. Bulletin de la Société Entomologique de Mulhouse, Apr.-June 1972: 17-28; Apr.-June 1974: 17-40.
Thomson, C. G. 1879. Skandenaviens Hymenoptera, mol. 2. pp. 1286. Lund.

Wancke. K. 1977. Ideen zum natürlichen Swsem der Bienen. Mitteilungen Dlänchner Entomologischen Gesellschalt 67:3963.

Warncke, K. 1979. Beiträge zur Bienenfauna des Iran: 10. Die

Gattung Ancyla Lep., mit einer Revision der Bienengattung Annla Lep. Bollettino del Museo Civico di Storia Naturale di Venezia 30: 183-195.
Whitfield, J. B. 1992. Phylogeny of the non-aculeate Apocrita and the evolution of parasitism in the I lomenoptera. Journal of Hymenoptera Research 1: 3-14.
Winston, M. L. 1979. The proboscis of the long-tongued bees: A comparative study. U'niversity of Kansas Science Bulletin 51:63I667.

Zeuner, F. E., and F. J. Manning. 1976. A monograph on fossil bees. Bulletin of the British Museum (Natural History), Geology 27 : 149-268, pls. I-4.

[^0]:

